

Diploma
in

Business Administration

Study Manual

SYSTEMS ANALYSIS

The Association of Business Executives

William House • 14 Worple Road • Wimbledon • London • SW19 4DD • United Kingdom
Tel: + 44(0)20 8879 1973 • Fax: + 44(0)20 8946 7153

E-mail: info@abeuk.com • www.abeuk.com

© Copyright RRC Business Training

© Copyright under licence to ABE from RRC Business Training

All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form, or by any means, electronic, electrostatic, mechanical, photocopied or otherwise,
without the express permission in writing from The Association of Business Executives.

abc

ABE Diploma in Business Administration

Study Manual

SYSTEMS ANALYSIS

Contents

Study
Unit

Title Page

 Syllabus i

1 Information and Systems 1
 Information and Data 3
 Information Needs 3
 Types of Information 5
 Management Information 8
 Systems Theory 10
 Objectives of a System 12
 A Basic Information System 13
 Decision Support Systems 14

2 Computing within Organisations 16
 The Development Life Cycle 18
 Systems Analysis – Feasibility Study 20
 Systems Analysis - Data Collection 25

3 Systems Development and Project Management
 Approaches to System Development 31
 “Hard” and “Soft” Systems 36
 Characteristics of a “Good” Systems Analysis Methodology 38
 Selecting an Appropriate Methodology 41
 Management of Change 41
 Project Management 44
 Problems During Development 46
 Rules of Project Management 48
 Specific Development Controls 49
 Control Techniques 50

4 System Specification
 The Development Life Cycle 59
 Specification of Requirements 62
 The Personnel Involved 65
 Systems Investigation 71
 The Feasibility or Initial Study 79
 Using Consultants 84

5 System Design
 Logical and Physical Design 88
 The Design Stage 89
 System Design Specification 92
 Design Considerations 93
 Human-Computer Interface 96

6 Approaches to Systems Analysis and Design
 Structured Systems Analysis and Design Methodology 102
 Working with Users 105
 Rapid Application Development (RAD) 110
 Joint Application Development (JAD) 110
 Skilled Small Team Development 112
 Prototyping 112
 Computer Aided Software Engineering (CASE) 114

7 Data Flow Diagrams
 System Definition 118
 Structured Systems Analysis and Design Methodology (SSADM) 118
 Data Flow Diagrams (DFDs) 119
 Drawing Data Flow Diagrams 123
 Advantages and Disadvantages of DFDS 124
 Worked Examples 125

8 Data Modelling
 Entity-Relationship Models (Or Logical Data Structures) 128
 Worked Example 131
 Data Dictionaries 133
 Case Tools 135
 Normalisation 136
 Fitting The Techniques Together 138

9 Entity Life Histories
 ELH Notation 142
 Interrelationship Between The DFD, Entity-Relationship Model

 And The ELH.
148

 Worked Example 148

10 Standards and Documentation
 The Role and Scope of Standards 152
 The Standards Manual 155
 Other Documentation 156
 Using Standard Forms 158

11 Systems Implementation
 The Implementation Process 162
 User Involvement 165
 Changeover Strategies 165
 Post-Implementation Reviews 171
 Training 175

12 System Maintenance and Security
 Monitoring 180
 Systems Maintenance 181
 Database Maintenance 182
 System Enhancements 183
 Need for System Security 184
 Security Measures 187

 i

© Copyright ABE

Diploma in Business Administration – Part 2

Systems Analysis

Syllabus

Aims
1. To give students an understanding of the tasks involved in designing a new information system

to meet an organisation’s specific requirements.

2. To enable students to create the major models used in the analysis and design of information
systems.

3. To enable students to contribute towards the design of an organisation’s information system
taking into consideration the technological and human aspects of the design.

Programme Content and Learning Objectives

After completing the programme, the student should be able to:
1. Information systems: background and theory

� Understand the development of systems analysis over the past century.

� Understand how a system may be defined and its attributes identified.

� Understand how information may be defined and its attributes identified.

2. The systems analysis and design framework

� Understand the need for and the logic of the Systems Development Life Cycle (SDLC).

3. Structures systems analysis and design

� Understand the need for a more thorough analysis of systems by the use of various
structured approaches known under the generic term of Structured Systems Analysis
(SSA).

4. Systems analysis tools and techniques: the process model

� Understand the reason for, and creation of, Data Flow Diagrams (DFDs).

5. Systems analysis tools and techniques: the entity model

� Understand the reason for, and creation of, entity relationship diagrams/models
(ERDs/ERMs).

6. Systems analysis tools and techniques: the behavioural model.

� Understand the reason for, and creation of, Entity Life Histories (ELHs).

ii

© Copyright ABE

7. Systems analysis tools and techniques: CASE tools

� Understand the need for Computer Aided Systems Engineering (CASE) tools in the work
of a systems analyst.

� Understand the use of prototyping techniques in the reduction of a system’s development
time.

8. Cross life cycle tasks

� Understand the need for the tools and techniques of project management, fact finding,
documentation, quality management, interpersonal and presentation skills.

Method of Assessment
By written examination. The pass mark is 40%. Time allowed 3 hours.

The question paper will contain:

Eight questions from which the candidate will be required to answer any four. All questions carry 25
marks.

Reading List

Essential Reading
� Yeates, D., Shields, M. and Helmy, D. Systems Analysis and Design; Pitman Publishing

� Robinson, B. and Prior, M. System Analysis Techniques; International Thomson Computer
Press

Additional Reading
� Lucey, T. Management Information Systems, 8th Edition; DP Publications

� Weaver, P. L. Practical SSADM V4; Pitman Publishing

� Laudon, K. J. C. and Laudon, J. P. Management Information Systems, 5th Edition; Prentice
Hall (see chapter 11 in particular)

1

© Licensed to ABE

Study Unit 1

Information and Systems

Contents Page

A. Information and Data 3

B. Information Needs 3
Role of Managers 3
How Much Detail is Needed? 4
Timeliness 4
Accuracy 4
Rarity 5
Quality of Information 5

C. Types of Information 5
Operating Information 6
Management Information 7
Trigger Information 7
Background Information 8

D. Management Information 8
Regular Reports 8
On-Demand Reports 8
Ad-Hoc Reports 8
Exception Reports 9
Analyses 9
Forecasting 9

E. Systems Theory 10
System Properties 10
Probabilistic and Deterministic 11
Open and Closed 11
Quantitative and Qualitative 12

(Continued over)

2 Information and Systems

© Licensed to ABE

F. Objectives of a System 12
Necessity for an Overriding Objective 12
Objectives of a Wider Context 12
How Objectives are Created 13

G. A Basic Information System 13

H. Decision Support Systems 14
Decision Theory 14
Role of Computer Systems 14
MIS, EIS and DSS 15

Information and Systems 3

© Licensed to ABE

A. INFORMATION AND DATA

It is important that you understand the difference between information and data.

Data is raw facts; for example, a group of figures, a list of names and such like. By itself, data tells us
nothing. Consider the following numbers:

212 263 189 220

In that form, the numbers could have a thousand different meanings. But if we add £ to the figures:

£212 £263 £189 £220

We can now see that they are monetary values.

If we add some dates:

January = £212

February = £263

March = £189

April = £220

Now we see that they demonstrate some kind of trend.

Alternatively:

212 screws, 263 brackets, 189 plugs, 220 bolts.

In this version we see that they are items on an order form.

We could rearrange the figures, we could add them up, find their differences, join them together and
so on. Only when the figures have been further processed do they tell us something. They then
convey information.

Information is raw data processed so as to convey a new meaning.

Theoretically, once we learn that new meaning, the information reverts to data, but in practice we
continue to regard it as information.

B. INFORMATION NEEDS

In organisations, information is required as the basis of taking action – essentially by managers.

Role of Managers
Managers normally have two roles

! decision maker; and

! controller.

Stated simply, the processes involved in these roles is for managers to make a decision, check the
outcome and either confirm or modify the decision in the light of events. This is a standard control
process, involving five stages:

(a) Establish a plan.

(b) Record the plan.

4 Information and Systems

© Licensed to ABE

(c) Implement the plan.

(d) Compare actual performance with the plan.

(e) Evaluate and decide further action.

You will readily see that information is needed at (a) in order to establish the plan, and at (d) to see
how things are working out. There is a constant flow of information.

How Much Detail is Needed?
Now that we understand what information is, it is appropriate to gain further understanding of this
information.

First of all, what level of detail is needed? Clearly this depends on the recipient or receiver of the
information. For example, the shop manager may need the daily sales total, whereas area office may
only need weekly totals. On the other hand, head office may only be interested in monthly totals. We
should only provide as much information as is actually required.

“The more detail, the more information” is not necessarily true. Were head office provided with daily
totals by each store, the “information” would simply be a mass of data requiring further processing
before becoming information.

Therefore, although a mass of data is needed from which to draw the information, the detail being
passed to managers should be no more than they require.

Information must be relevant to the purpose for which it is being used. Users should be provided
with the minimum of information which will satisfy their needs. This is quite easy to achieve with
computers, and information reports can be formatted according to individual user requirements.

Timeliness
“Information should be available instantly.” This is possibly true at operating level, where the time-
steps can be very short – for example, spoilage rate information on a production line needs to be
readily available in order to check immediately on any deficiency as it arises. At managerial level,
however, there is usually a longer thinking and decision time available, and so the need for immediate
information is not necessarily valid.

The aim must be to provide timely information – that is, information at the time it is required. We can
therefore say that information must be provided within a time-scale which enables it to be used
effectively by management.

Accuracy
A high level of accuracy is usually achieved only at a high cost. Managers must be made aware of the
cost impact if they specify very accurate information needs. Often slightly less accurate but sufficient
information can be provided at a greatly reduced cost and it may also be more up-to-date.

Note the difference between accuracy and precision. Sales figures could be computed to the nearest
penny, pound or thousand pounds – i.e. calculated to different levels of precision. However, if the
data has been incorrectly entered, or the calculations carried out incorrectly, the resulting total will be
inaccurate (wrong). Another type of inaccuracy is when approximate sales figures are collected
because it would be much later in the month before exact figures were available. It is here that a
compromise is made between accuracy and timeliness.

This compromise is important and we can think of a further example involving quotations for a
proposed new product. Imagine the situation being one where the quotations are urgently required

Information and Systems 5

© Licensed to ABE

and yet 100% of supporting data is not known. In such cases, a 5% error margin may well be
acceptable as a compromise in facilitating the progress of the quotations to the customer.

Rarity
Exception reporting draws the attention of users to changes in the situation. It avoids the need for
managers to wade through long lists, looking for the one vital piece of information.

But who decides what is exceptional and how do they decide? When a system is being designed,
careful thought must be given to this aspect and the ability to alter the parameters which denote
exceptions should be built into the system.

Management by exception is an important approach which, if used correctly, can greatly increase the
effectiveness of management. What criteria constitute “exceptions” must be regularly reviewed, so
that they do not become outdated and thereby provide inaccurate reporting for consideration and
actioning by management.

Quality of Information
Quality information needs to be relevant, reliable and robust.

! Relevant means it is pertinent to the recipient, who will then operate more effectively with the
information than without it.

! Reliable means that the information is timely, accurate and verifiable.

! Robust means that the information will stand the test of time and failures of handling whether
human, system or organisational.

C. TYPES OF INFORMATION
All businesses can be categorised into three main areas of operation:

Figure 1.1

6 Information and Systems

© Licensed to ABE

As we saw in Section B previously, all the information, at whatever level, should be:

! relevant to requirements

! at an acceptable level of accuracy

! up-to-date and timely.

Looking at information from a managerial viewpoint, we have the following.

(a) At the operational level, the shop-floor supervisory staff receive daily and weekly operational
requirements such as order sheets, product changes and so on. They provide returns of orders
filled, stock levels, spare capacity, manpower used and required and so on.

(b) Such information as above is used in summary form by managers at the tactical level in the
actioning of reports on performance, budget versus actual and so on.

(c) At the strategic (director) level, information is much more global, having been highly
summarised. It is at this level that policy making decisions, short- and long-term, are taken and
passed down to the tactical level for actioning by the management.

In Figure 1.1, note how policies are passed down but their interpretation in terms of actioning is
left to the management to administer. Feedback is then passed back up the strata originating in
the operational level and finally, after much processing and refining, reaching the strategic level
for overall review.

It is important that you are constantly aware that the above three information levels are not discrete.
They all overlap, especially in smaller organisations where directors and managers may be the same
people and where managers take a more “hands on” approach to operational matters.

It will also be useful for us to look more closely at each of these categorisations from an information
viewpoint.

Operating Information
Operating information is used to instruct the employees of the business to ensure that they all know
what is required of them. Despatch instructions to the warehouse, for example, state what is to be
despatched and where it is to be sent.

Operating information – which can also be called routine information – contains the facts of what has
been done, to provide a history of the actions carried out. A stores issue note records the fact that a
quantity of raw materials has been given out to be used in production.

This type of information can flow to and from the outside world – orders received from customers,
invoices sent to customers, or bank statements.

Without this information, the business could not operate. It is often termed “paperwork” since most
operating information is presented in the form of paper documents.

When companies start to use computerised data processing, it is normally used first for the production
of operating information. However, microcomputers are beginning to change this, particularly in very
small companies where the amount of paperwork to be handled is relatively small and often very
varied. In such circumstances, management techniques such as the use of spreadsheets often play a
prominent role in the computer utilisation. Word processing also tends to dominate the small business
area because of its universal application.

Information and Systems 7

© Licensed to ABE

Management Information
All three categories of information can be collectively seen as management information.

(a) Firstly, we have those decisions associated with the day-to-day running of the business:

! “What action must be taken to bring the sales level up to the budget estimate?”

! “Will overtime be needed to complete a job?”

Most of these decisions are taken by junior levels of management – for example, by supervisors
– and usually require that the information contains very detailed facts about the activities for
which the manager is responsible. This information will come in the form of reports giving
detailed summaries and analyses of the current situation.

This type of information is often categorised as operational information.

(b) Secondly, middle management is responsible for the overall running of the business on a week-
to-week and month-to-month basis.

They must compare actual expenditure and sales with the targets provided by senior
management, and require information to back up explanations of any divergences from the
budgeted figures. They must also prepare the terms of reference to which junior management is
to operate.

We can thus say that the information requirements of middle management are not so detailed,
but they are wider-ranging – they will need to know about the outside world, as well as the
progress of the business itself.

This type of information is generally categorised as tactical information.

(c) Finally, the senior management needs to plan into the future, often as far as five years ahead,
and possibly further. They provide a framework for middle management by defining the
policies to be followed and setting yearly budgets and targets. Their information requirements
are therefore more general and each decision they take will have far-reaching effects.

This type of information is generally categorised as strategic information.

An organisation needs to collect data about items not immediately related to the running of the
organisation – i.e. future prices of raw materials, competitive products, personnel skills,
national statistics, new processes, new equipment, etc. A considerable volume of this data is to
be found within any organisation and exists in many different forms. This data is used in
considering strategy in medium- to long-term plans.

All the categories of information also include two sub-types: trigger information and
background information.

Trigger Information
As its name implies, this triggers some action. In the case of operational information it is usually an
instruction which is to be carried out, for example a job card which instructs a machine operator to
make a particular item; or a request which requires a decision before an action is carried out, for
example an order from a customer whose credit limit may need checking before the order is met.

A trigger for management could be a report indicating that production was lower than expected, and
the manager would have to decide how the situation was to be rectified.

A trigger for the directors may be national statistics such as the exchange rates or a competitor’s
actions in introducing a new product. A corporate response will be required.

8 Information and Systems

© Licensed to ABE

Background Information
This gives additional knowledge when trigger information is received. In the case of the customer
order above, the clerk who checked the order would refer to the customer’s account to find the credit
limit and the current balance. These last two items are background information for the clerk.

In the case of the lower production report, relevant background information could be knowledge of
seasonal demand cycles, or of a technical interruption to production which has been corrected.

In the case of the introduction of a new competing product, background information could be
knowledge of the competing company’s strengths or weaknesses.

D. MANAGEMENT INFORMATION

We have looked at information needs in the context of management decision-making. The
computerised system that provides the relevant information is known as a Management Information
System or simply as MIS.

We study these in much more detail later in the unit and elsewhere in the course

Whilst some of the information may be obtained directly from a screen display, as a result of an
enquiry, most of it will be presented in the form of reports. Managers are now, however, beginning to
access information in a third way – by extracting it from the main computer files and then
manipulating it themselves, using a computer package such as a spreadsheet running on a personal
computer or workstation. Various types of report are generated by such a system to help managers
make decisions.

Regular Reports
These are the daily, weekly, monthly, annual reports produced automatically by the computer system.
The problem here is to make sure that the information presented is relevant to the recipient and that
regular reports do not have too wide a circulation list.

On-Demand Reports
The term “on demand” can be used in two ways:

(a) Particular managers may request a copy of a regular report only when they themselves want
one.

(b) A standard report can be requested at a time when it is not normally produced; for example, if
aged debtor reports are normally produced at the end of each month, a credit controller could
request one in the middle of the month.

It is more efficient to provide information for just those people who require it but, especially in large
organisations, on-demand reporting requires an organised response system. Otherwise, managers will
become frustrated if they cannot get the requested information quickly when they do need it.

Ad-Hoc Reports
Managers sometimes require items of information in a form which has not been specified within the
computer system. If the data is not available within the computer system then the request cannot be
met. For example, if a Sales Director asks for monthly sales of a product for the past year but the
computer holds only sales this month and sales for the year, the only method of obtaining the
information is to go back to monthly sales analyses kept as hard copy – providing these exist in the
form required.

Information and Systems 9

© Licensed to ABE

Even if the data is within the computer system, extracting it may be a complicated process which
cannot be carried out in the short time managers usually allow between issuing the request and
requiring the output. To some extent, the links between main systems and spreadsheet packages, now
quite common, make it easier to satisfy these requests. However, one way of coping with ad hoc
reports is to try to foresee what might be required and to incorporate them as on-demand reports when
the system is built.

Modern computer systems are now increasingly overcoming this problem by using report generators.
Such programs allow managers to specify the format in which they want data to be printed out and
they also allow for sub-totals, totals and other calculations to be incorporated therein. Provided that
data is held on the computer system, the specified report extracts it quickly and accurately in the
format specified. Such reports can either be used as they are or incorporated into word-processed
reports of a longer nature. Whichever reason triggers the request, properly used they can provide a
cost-effective means of enabling ad hoc reports, user specified, to be produced.

In many circumstances the ad hoc report tends to become a regular supplement to the standard report
pending the next system revision. This would then establish its justification as being worthwhile of
inclusion as a standard report and the system would be amended accordingly.

Exception Reports
Exception reporting was mentioned earlier. An exception report could also be a regular report, for
example a weekly report showing all those stock items with orders overdue by more than a week.

Analyses
An analysis summarises information in a particular way. For example, sales analyses can be
summaries by:

(a) Product

Which products were bought by which customers? The analysis could be summarised at the
product group level or give information down to individual products.

(b) Customers

Which customers (type of customer) bought which products?

(c) Region

Which geographic (or sales) region bought which products?

Data held in a computer can be analysed in so many different ways that it is important that designers
consider what will really be useful to their particular company. The ability to vary the grouping and
selection criteria is also useful.

When packages are produced, sales analysis is one of the areas where it is often possible to customise
the reports which are produced. This is because each company has its own individual requirements.

When deciding upon the depth of sales or other analyses, it is important to remember that storage has
a cost and that this cost must be compared with the benefits of such storage. Despite storage having
increasingly large capacity and its costs reducing greatly, this compromise remains valid today.

Forecasting
Many packages now include a forecasting module, but it is important that managers know how these
forecasts are obtained, since there are a variety of techniques which can be used. Strictly speaking,
information based on historical data projected into the future is a prediction, whilst forecasts are based

10 Information and Systems

© Licensed to ABE

on subjective judgements as to the effect of various factors. Many sales forecasting systems start with
historical predictions.

E. SYSTEMS THEORY
A dictionary definition of “system” is:

“Anything formed of parts placed together or adjusted into a regular and connected whole.”

It would be worthwhile if you were to pause at this point and think of some of the systems you are
familiar with.

You may have thought of:

! central heating system

! road/railway system

! administrative system

! government system

! management system

and so on.

System Properties
Systems receive input and produce output.

Systems consist of sub-systems which are themselves systems performing some function on behalf of
the larger system. A fully integrated system consists of sub-systems, each of which has, as input, the
output of another sub-system so that all the sub-systems together fulfil the overall objective of the
whole system.

A system must have a boundary; outside the boundary is the environment. The environment of a
computer system includes any people or business activities which interact with it, the sources of the
data which forms its input and the recipients of the information it provides.

The art of systems analysis is being able to define system boundaries – to decide which parts should
be included within a particular study, so that a logical and convenient model can be prepared.

Another definition of system is “the method by which an individual, organisation or mechanism
accomplishes the tasks necessary to achieve its objectives”. The method used will be made up of a
number of related procedures, and – in a large system – there may be groups of procedures called
sub-systems. Figure 1.2 shows a business system consisting of four main sub-systems, each of which
can be divided – as shown for accounting – into a number of smaller sub-systems.

A system can thus be thought of as hierarchical, and this hierarchical nature extends both ways, in
that the system being described can also be looked at as being a sub-system of a larger or wider
system. Staying with our accounting example, a sales ledger system is composed of a number of
subsections, whilst itself being a sub-system of the total accounting system of the organisation.

Information and Systems 11

© Licensed to ABE

THE BUSINESS SYSTEM

ACCOUNTING MARKETING PRODUCTION PERSONNEL

Sales

Purchasing

Payroll

Fixed Costs

Profit and Loss
Accounts

Figure 1.2

Probabilistic and Deterministic
Consider a slot machine. Here you place your coin in the machine and, provided the machine is
stocked, the required item will be delivered automatically. The outcome is completely predictable; a
slot machine is an example of a deterministic system. Whenever we take a particular action, the
result or resulting action will invariably be the same, providing that the system is working correctly.
Every step in the system has this feature and so the total system is deterministic in nature.

A computer can be considered to be a deterministic system since it automatically follows the series of
instructions it has been given. At least this is true for traditional computer systems, which includes
the vast majority of those currently in use and certainly all those used for data processing.

Alternatively there are probabilistic systems whose predictability is less than that of deterministic
systems. If, instead of always getting an item out of a slot machine, you sometimes got nothing – for
example, from a fruit machine or some other gambling device – then this system would be
probabilistic. Stated simply, we can never be certain of how such a system will work, but we can
assume that a specific action will take place, based on our previous experience or knowledge.

An example of a probabilistic system is a game of cards or the pricing system of an organisation.

Open and Closed
When a system is isolated from its surrounding environment it is a closed system. When a system
responds to input from its environment and provides output to the environment, it is an open system.
The same system can be seen as closed or open when viewed from different perspectives. For
example, a payroll system is closed when viewed from an organisational position, but is open when
seen from inside the payroll section.

12 Information and Systems

© Licensed to ABE

Quantitative and Qualitative
A quantitative system will process and output actual values. All financial systems are quantitative.

A qualitative system processes and outputs less measurable quantities such as “a better service to
clients”.

F. OBJECTIVES OF A SYSTEM

Objectives are the goals towards which a system is working. In an organisation the overall objectives
are seen differently in the separate departments, each of which tends to have its own objectives. For
example, with inventory, Marketing wants to be able to supply the complete range of products
whenever customer demand occurs; Production wants to manufacture products in long runs of each
product to reduce set-up costs, etc.; and Accounting wants to keep stocks to a minimum.

Decisions selecting between conflicting objectives have to be made and once made they become
policies and lower level decision-making will have to be made within the context of company
policies. If, for example, it is company policy to buy computers from one particular supplier, then a
proposal for a computer system will need to be designed round the models offered in a given range,
unless a very good case can be made for using a machine from a competitor.

Necessity for an Overriding Objective
By definition, every system must have an objective. It is essential that an objective is decided upon
even before the system is designed. At this stage it is likely that a number of conflicting objectives
will be considered. For example, when discussing the setting up of a production line, the following
objectives may be amongst those considered:

! the complete safety of the line.

! the best environment for the production line.

! the best equipped line to produce a better quality product.

! the most efficient line in terms of cost per unit of output.

No doubt there will be other objectives, but you can see that many of them will be in conflict. This
conflict of objectives is a characteristic of all systems. It is essential for all objectives to be
considered and an objective established that is a compromise between all those in conflict.

The overall objective that has been established for a system must be one that can be achieved.
Although the objective may at times seem difficult or nearly impossible, it is of prime importance that
in the long run it is achievable.

Objectives of a Wider Context
We have said that individual systems form part of a larger system. It is essential when setting out
systems objectives that account is taken of the objectives of the next higher system.

It is better if the objectives of the higher systems are known before those of the sub-systems are
established. The communication of the objectives from the higher to the lower systems is of great
importance.

Information and Systems 13

© Licensed to ABE

How Objectives are Created
The overall objective of a system is created firstly by listing all possible objectives. Many of these
will be in open conflict and it is therefore necessary to weight, in order of importance, the objectives
so far specified.

This list will have been formulated by consulting the interested parties. When an overall objective has
been decided upon, it is necessary to “sell” it to those parties whose ideas were in conflict at the
earlier stage. Perhaps at this stage minor alterations will be made after further consultations.

G. A BASIC INFORMATION SYSTEM

Information systems provide information to managers and whoever else requires it. It is difficult to
classify information systems as deterministic or probabilistic. They are programmable (i.e. can be
computerised) and thus appear deterministic. From the user viewpoint, however, there may
sometimes be no satisfactory output, thus making them appear probabilistic.

In the same way, they can be seen as both open and closed. However, as we shall always want
information systems to evolve, they are primarily open.

They do need to be quantitative though. The user needs concrete information on which to base
decisions.

An efficient and effective information system will always give:

! THE RIGHT INFORMATION

! TO THE RIGHT PERSON

! AT THE RIGHT TIME

! AT THE RIGHT COST

(a) The Right Information

The information should be in detail appropriate to the recipient – detailed plant-by-plant figures
for plant and works managers and only the summarised variances for the managing directors
(although they can always get supporting information if they want it). Beware, however, of
being too summary orientated: it is essential to measure what is happening from time to time,
otherwise it is easy to become a summary expert without knowing any real facts. The
information should be relevant.

However, a flow of information across specialised barriers is essential, otherwise managers get
too shut up in their own worlds and may forget for whom they are working and what effect they
have on the company’s operations. It can be dangerous to feed summaries to persons other than
the specialist who is in control, for it can lead to a lot of unfounded pessimism at bad figures or
joy at good ones, when only the expert knows how bad is bad and how good is good!

(b) To the Right Person

This depends greatly on who set the budget and how. In the ideal situation, information is fed
to the lowest possible point in the company hierarchy at which the recipient is happy to accept
responsibility for the figures and do something if they are wrong.

(c) At the Right Time

In principle, the right time is “not too early, not too late”, so that the best form of corrective
action can be taken. There is an obvious difference between statistics on the temperature of a

14 Information and Systems

© Licensed to ABE

chicken run, where only several minutes outside certain temperature limits can cause death to
the birds, and statistics on aviation insurance (figures more than once every six months are
useless).

(d) At the Right Cost

There is no point in spending much time and money getting figures accurate to four percentage
points if equally appropriate controlling action could have been taken on ± 5%. This quest for
accuracy usually results in the information arriving too late to be of any use. It is a natural
feature of industry to specify the tolerances to which any product should be made. This parallel
should be extended to information: accountants, for instance, have to be told what information
is required and how accurate it has to be.

H. DECISION SUPPORT SYSTEMS

We all make decisions each day. Most are of no significance. Some, however, are extremely
important.

In taking decisions how do we know what is “right” or what is “wrong”? Perhaps rather than a black
or white right or wrong consequence, there is a sliding scale of degrees of successful or otherwise
decision-making.

Normally, in making decisions, we rely on past experience. However, with businesses operating in an
increasingly complex and changing environment we may not be able to rely on past experience to lead
us to the right decision, and other means must be found.

Decision Theory
Decisions have to be made whenever alternative courses of action are available. Each course of
action will lead to one or more resultant states. If there is only one possible outcome as a result of a
particular decision, the resultant state is certain.

Decision-making can be classified as being under:

(a) Certainty: once a decision is made, there is only one result. Deciding which decision to take
is a matter of determining this resultant state for each possible decision and selecting the most
desirable one.

(b) Risk: there are a number of possible outcomes for each course of action and the probability of
occurrence of each resultant state can be determined. Various techniques can be used here, but
the results obtained are completely dependent upon the accuracy with which the probability of
each outcome can be estimated.

(c) Uncertainty: there are a number of possible outcomes for each course of action, but the
probability of any particular one occurring cannot be determined.

(d) Conflict: the possible courses of action are affected by the behaviour of a competitor. Game
theory is a method of developing a strategy for use in such circumstances but the situation is
usually very dynamic, with competitors modifying their behaviour as soon as a decision made
by their opponent is known.

Role of Computer Systems
Making decisions is the responsibility of managers but they can be helped to reach the “right”
decision if they are provided with up-to-date and accurate information. Here is where computer

Information and Systems 15

© Licensed to ABE

systems play their part. Some of the facilities provided by a computer which can help a manager in
reaching a decision are:

! Rapid processing of historical data.

! Ability to carry out simulations.

! Ability to carry out calculations rapidly so that it becomes feasible to use operational research
techniques of various kinds; these techniques can calculate optimum solutions and show the
effect of variation in some of the parameters.

! Highlighting of the unusual – the value of a piece of information often depends on its
unusualness and, by means of exception reporting, the computer can draw the attention of the
manager to outstanding items.

! Personal computer systems which allow managers to manipulate data and information
themselves so that they become more aware of its implications.

Thus a computer provides managers with powerful and intelligent tools to assist them in their job;
these tools are often called decision support systems.

MIS, EIS and DSS
Earlier in the unit we said a little about the Management Information System or MIS. This is the
computerised information system that carries all the corporate information used in all the company
departments.

Clearly, this information is provided to give a basis on which decisions can be made.

However, as part of the MIS, an EIS or Executive Information System may be provided. This system
will draw information from the MIS files and provide particular executives with exactly the
information they require to support their decision-making. It will assist direct access to the necessary
data and provide a means of manipulating the data to compile reports as required. We have already
seen the various reports that can be provided by such systems. The EIS will generate tailored reports
for particular executives.

When an EIS is designed to provide information specifically for specified decisions, then we
sometimes refer to the system as a DSS or Decision Support System.

16 Information and Systems

© Licensed to ABE

17

© Licensed to ABE

Study Unit 2

Computing Within Organisations

Contents Page

A. The Development Life Cycle 18
Introduction 18
Frederick Winslow Taylor 18

B. Systems Analysis – Feasibility Study 20
Employee Consultation 21
Initial Study 22
Feasibility Study 23

C. Systems Analysis - Data Collection 25
Methodology 25
Data Analysis 26
Data presentation 26

18 Computing Within Organisations

© Licensed to ABE

A. THE DEVELOPMENT LIFE CYCLE

Introduction
In this study unit, we will be looking at the technique of systems analysis in detail. Systems analysis
involves dividing a situation or process into constituent parts and then studying these parts to
understand how they interact with each other.

We will begin our study of the subject right at the beginning with a brief look at the work of Frederick
Winslow Taylor who is said to be the father of scientific management, method study and work
measurement. He was also the proponent of systems linking work output directly to the level of
reward. In the introduction to his book, the Principles of Scientific Management, F.W. Taylor states
"In the past the man has been first; in the future the system must be first."

We will now look at how systems analysis is practised today.

Systems analysis is the first stage in the development of a structured system such as a computerised
system. In general, we can break the development down into four distinct sections: -

The development life cycle, so called because

development work continues throughout a system’s

life. Note how every subsequent stage refers back to

the analysis. Even on-going maintenance during an

operational system will refer to the analysis.

Figure 2.1 Development Life Cycle

As figure 2.1 shows, these stages are not strictly sequential in that the developers working through
any specific stage will be continually referring back to any of the previous stages. At all times, a stage
development must be consistent with all that has gone before, and in particular with the systems
specification that was the outcome of the analysis stage.

Frederick Winslow Taylor
Taylor's work emerged in the late 19th, early 20th century with the rapid growth in the scale and
complexity of industry. Agents or managers were replacing the enterprising owner who had become
an absentee from the business. The old relationship between owner and worker changed as generally
incompetent managers took over. Taylor saw these managers as ignorant, selfish and irrational.

His work drew on his experience of the old approach dominated by managerial ideas and actions. He
argued that he was applying "scientific" method to the new practical management problems. His
principles, which draw on a systematic study of work behaviour, and on his view of the direct
relationship between incentive and efforts are still prevalent in modern organisations. Piecework,
incentives and bonuses are still believed in by managers.

Analysis

Design

Build

Review &
maintain

Computing Within Organisations 19

© Licensed to ABE

! Work Measurement

Taylor's management devices of work measurement and job specialisation have decisively
influenced the work culture. His models are based on assumptions about an "economically
motivated” worker and are linked to notions of worker-management relations. Taylor’s
diagnosis of industrial ills can be reduced to one principle – that wastage of resources and time
in the workplace is causing inefficiency and disinclination to work! This is particularly evident
where the working group controls the output. The situation is similar among managers who
lack information about worker abilities and how long it takes to do tasks. When management
discovers that the job is too easy they autocratically alter timings. In response, workers get
together in order to find ways of overcoming this tendency and to gain proper reward for their
efforts.

Taylor introduced ways of measuring efficiency, such as work-study, method study and work
measurement, so as to capitalise on worker rationality and improve management information.
In the early part of the 20th century, Frank Gilbreth reduced the basic number of operations in
bricklaying from 18 to 5. This was the beginning of the age of the management consultant and
in many industrial corporations such as Ford, work-study was applied with considerable
success.

Taylor laid down the following management rules: -

1. Find and then establish the best method and a reasonable time for completing a task.

2. Select staff on technical criteria alone, such as their ability to do the job, and use rigorous
training to develop their skills, using incentives where appropriate.

3. The management structure and the technical planning, inspection and the clerical support
work should be separated from workplace operations. Taylor proposed "a functional
foremanship" described by the ‘order of work clerk’, the ‘time and cost clerk’ and the
‘inspector’, all in direct contact with the individual worker. These are equivalent to the
modern roles of production planning, production control, inspections, maintenance, and
personnel management.

! Job Specialisation

Taylor encouraged the creation of specialist jobs and 'thinking departments'. For example,
planning departments took planning responsibility away from line management. Taylor soon
discovered, however, that conflicts emerge between these specialists and the older style
generalists. In the early days, the specialists were greatly resented and Taylor had to modify his
views to allow for this.

Over time, the situation changed and specialist departments came into their own. Management
recognised that even its tasks were governed by measurable rules. No longer could they rule
the work place in an arbitrary manner. Managers had to accept advice from the specialists and
had to hand over many management functions to specialists. The concept of team co-
operation developed, and departments such as administration, accountancy, sales and
personnel appeared in large organisations.

An administrative bureaucracy soon followed and it was clear that there was a need to study the
flow of paper through this bureaucracy. Taylor’s ideas were adapted and the science of
Organisation and Methods (O&M) was born. Various tools were developed to help and flow
charts were typical. Flow charts are a picture of an activity set out in sequential steps. The
following simple flow chart, using traditional notation, shows the activity of making a pot of
tea: -

20 Computing Within Organisations

© Licensed to ABE

Figure 2.2: Flow Charts

During the middle years of the last century, O&M specialists found computers ideal for their
analytical techniques. The techniques, as originally devised by Taylor, and subsequently
refined by others, were ‘scientific’ and precise and so were easily computerised. The O&M
specialist now had a powerful tool, and their particular place in every organisation was secure.

The term O&M was gradually replaced by another term, ‘systems analyst’. Today, no business
project would be implemented without the attention of the systems analyst. Taylor’s
techniques, which had originally met with so much scepticism, are now accepted as the basis of
all development projects.

SYSTEMS ANALYSIS – FEASIBILITY STUDY

If you were asked to organise the assembly of a large jigsaw with a number of helpers, some more
skilled than others, you would probably break down the activity ‘do jigsaw’ into a series of sequential
and parallel tasks and allocate resources or helpers to each task. You might adopt one of the following
methods:

Method 1

! Sort out all the edge pieces (all helpers).

! Complete the edge pieces – adults and sort out the ‘sky’ pieces from the picture detail
(children)

! Complete the sky – adults and extract and complete easily identifiable objects (children).

! Place objects into approximate positions (adults).

! Complete jigsaw (all).

Pour hot water into teapot

No

YesIs kettle boiling?Wait

storage

Put tea in teapotTea caddy

Switch on electric kettle

Put water in the kettle

Computing Within Organisations 21

© Licensed to ABE

Method 2

An alternative approach would be to discuss each piece in turn as a committee and either place it or
discard it.

Method 3

A third approach would be to abandon the committee and allow each helper to select pieces at
random, either placing them or discarding them.

Whilst we have all adopted the third method at some time or another, I think you will agree that the
first is the more likely to succeed. Let us examine why.

(a) The problem has been broken down into manageable and understandable activities.

(b) The activities have been structured so that helpers can get on with their work with a minimum
of dependence on each other.

(c) Each helper can advance the activity without the detailed involvement of you, the organiser.
(However, co-ordination of the effort is still required – you need to see the overall picture).

All system developments follow a common pattern, known as the development life cycle (see figure
2.1). All subsequent stages of the development continually refer back to the analysis. In other words,
it is very important that the whole development is built on a firm analytical foundation.

The initial study is, as you would expect, the beginning of analysis proper. But a word of caution
first. There is often confusion in the naming of the various studies made at the beginning of a
development project. Sometimes an initial study is made to quickly assess the proposals before any
further work is done. If everything seems acceptable at this stage, then a feasibility requirement
study is undertaken. This is used to investigate the situation in detail so that the new requirements can
be formally reported as a requirement report.

However, not every organisation does separate reports and often, the initial study is very informal and
is not really considered a report. The feasibility study becomes the first stage. The requirements are
also often built into the feasibility study so that there is no separate requirement report. The approach
used is not important so long as we understand that there are essentially three stages:

1. A brief assessment of the situation

2. A detailed assessment of the situation

3. A set of requirements

For our purposes, we shall consider the analysis study as encompassing three stages:

! the initial study

! the feasibility study

! the requirements analysis

Employee Consultation
At the very beginning of any systems project the golden rule is to get the user involved. If the user
has “had a good idea”, or is in genuine need of help in the provision of information, or has developed
a managerial style which always involves the specialist, then the analyst’s approach will be
consultative or catalytic; there will be participation on both sides and the study will make good
progress. On the other hand, if the managerial attitude is, “I know all there is to know about my
work”, or if a change is being imposed due to market conditions or from a higher level, then the
analyst may adopt an innocent - “I wonder if you can help me” or autocratic “We have to get this

22 Computing Within Organisations

© Licensed to ABE

done” approach. Here, there may be antagonism or suspicion and the analyst will need to work at
developing relationships as well as establishing facts. Of course, analysts, by their own attitude, will
influence the relationships between systems staff and user staff. Good preparation is essential in all
face-to-face discussions, but the analyst must resist the temptation to show off or impress with his
grasp of the procedures. If a manager is determined to show that he understands every procedure in
his department, this is a useful exercise for the analyst, who must become the interested listener.

The development manager will ask a whole series of questions. The answers to these are worked out
between the development manager, the company management, users and others involved in the
development. This initial study is designed to test the feasibility of the chosen system. Typical
questions could be:

! What is the scope of the proposed system?

! What are its boundaries?

! What is the system for?

! How many people are involved and who are they?

! How many people will be affected?

! What development method is to be used?

! How will the system’s success be measured?

There are many similar questions that could also be asked, but these will be specific to the project. It
is also necessary for a decision to be made over which development method to use. This will depend
upon the way the company sees itself and on the skills of the analyst. In most cases, the method
called SSADM (Structured Systems Analysis and Design Methodology) will be the choice.

An important point to keep in mind is that few systems exist in isolation. This means that any new
system will be required to fit into a pre-existing computerised function and methods used previously
will have a bearing on what is used on the new job.

Initial Study
Should a system be accepted for development, then initial requirements or terms of reference are set.
The following is an outline of a Terms of Reference memo:

From: Systems steering group

To: Systems development group

Terms of Reference

Recommend methods for the effective management of:

Speed of activity 1

Speed of activity 2

Number of errors allowed in documentation

Investigate and list the advantages and disadvantages of:

On-line data entry

Batch data entry, etc

Report on the feasibility of the project

Computing Within Organisations 23

© Licensed to ABE

Much preparatory work needs to be done before the actual development project begins. There are
three distinct parts to the initial study:

1. Personnel. Is the expertise of the existing staff sufficient to tackle a development project? The
same question must also be asked of any outside agency that may be proposed for the job. If the
answer is ‘no’ then the expertise must be hired in or existing staff trained. There is then the
question of whether the extra cost is justified by the proposed system?

2. Technical. Is the current hardware and software capable of supporting the proposed new system?
If the answer is ‘no’, then there will be considerable extra cost which may affect the proposals.

3. Financial. Even if the proposed system does provide an acceptable return on investment, is the
capital available for the development? Again, obtaining extra capital can be expensive.

As we have seen, the analysis stage seeks to provide an interface into the subsequent stages and it is
this stage that links any existing system with the new system. It is therefore most important to fully
understand the existing situation. All organisations must approach the establishment of computerised
systems with care as there is a tendency for very senior managers to decide in some ad hoc way that
they need such and such a system.

Feasibility Study
Once a project has been provisionally accepted for development, it is the task of the IT department to
investigate its feasibility. The development request comes, initially, comes from a user department of
the organisation. The user sets out the requirements formally and presents them to the appropriate
committee. The IT section will then have to investigate the request.

The feasibility study is needed to obtain sufficient information for a decision on the next step in the
project. The analyst looks for details of the organisation, staffing levels and cost, and sufficient
information about procedures to relate to the problem in hand, whether it be an imposed problem
through legislation and the market, or a required one originating from a good idea or a need.

Most of this level of information can be obtained from the manager. Quantitative information, such as
the number of invoices produced, the number of products in stock, number of customers in debt, gives
the analyst a basis for comparisons. Cut-off times, frequencies, peak periods and forecasts are all
useful items and must be consciously sought. Again, the development of a checklist of questions for
the discussions is essential and might be defined as a standard. From these initial facts, the analyst
builds up a picture of the current activities and attempts to comprehend the scale of the project ahead.
Whilst no firm decisions can yet be made, possible approaches to the solution can be examined. It
may be quite apparent that a non-computer solution would be appropriate, or, in a labour-intensive
procedure, that some form of automation would

The feasibility study involves a series of five steps:

1. Understanding the problem

The first task is to go back to users of the proposed system and check their understanding of the
problem. Suppose, for example, the despatch department is recognised as being very slow and
the project is intended to solve this by having a system to produce a list, in shelf sequence, of
goods to be despatched for each order. Further checking may reveal that the management of the
warehouse is inadequate and that goods are always placed on the nearest available shelf. There
is then no fixed position for each item. The developers could have gone ahead and produced an
excellent system, but the problem would not have been solved. This could very easily bring the
developers into disrepute!

24 Computing Within Organisations

© Licensed to ABE

So first of all, the developers must obtain a clear definition of the user requirements. However,
even before obtaining this, the developers need to establish who is the client: the person or
group with overall responsibility for ensuring that the project’s business objectives are met.
Different people will almost certainly have differing views of what is required so we must be
clear at the outset who will have the final say. In discussing objectives with end users, a number
of techniques can be used, including the identification of critical success factors. These seek to
define various business related attributes which, if achieved, will demonstrate the success of the
particular project. Examples of critical success factors could be:

! To achieve a 15% market share

! To ensure all customers are invoiced in line with company policy

! To answer 80% of queries from clients within 5 minutes and all queries within two
days

! To maximise profits from the sale of widgets

The high-level business functions necessary to achieve the critical success factors are then
identified in conjunction with the user to form the basic objectives. These processes may relate
directly or indirectly to IT or may be totally separate. The reason why queries are not answered,
for example, may be that there are insufficient trained staff to deal with users or the
telecommunications system may have become outdated and in need of change.

Constraints are also identified at this stage since they are likely to have significant implications
for the project. Examples of constraints are:

! Cost not to exceed £250,000

! No additional staff to be employed

! No significant relocation of staff

! Project to be completed by end of financial year

! System to operate on existing hardware

More detailed objective requirements may also be agreed at this stage, such as:

! Response time/speed of transactions

! Return on investment

! Ease of use

! Job satisfaction

These objectives are intended to ensure that we solve the right problem for the right person. No
matter how well a project progresses, if it is seeking to solve the wrong problem there is no way
it can be successful.

Next, the purpose of the feasibility study will be agreed. Sometimes referred to as a Scoping
Study, this phase of the project seeks to determine the overall viability of devising a product or
service to meet the user’s objectives within the constraints laid down. It will ensure that the
high level functions identified above do, indeed, cover the full scope of the product required to
meet the aims and objectives of the client. The skill of the IT professional is needed to
determine whether or not it is feasible to develop such a product within the constraints.
Reference can be made to similar systems in other organisations, to commercially available
packages and/or to previous experience within the company of devising similar products. In

Computing Within Organisations 25

© Licensed to ABE

summary, the main purpose of the feasibility study is to establish whether or not the proposed
system is both feasible and desirable.

2. Preparing gross estimates of costs and benefits

The principal costing technique used is cost/benefit analysis. The costs of the existing system
are evaluated, and then the costs of the proposed system are estimated, including the
development costs. The net cost is then set against the likely benefits. These are in the
categories:

! Direct savings, such as a cost reduction.

! Measurable benefits, such as actual financial return from the new system.

! Intangible benefits, such as an improved ordering system. Whilst these are difficult to
quantify they generally give better customer service.

3. Full investigation and consideration of alternatives

When all the relevant facts about the existing situation have been collected, assembled and
analysed, different approaches to solving the problem can be considered. It is not enough to
add the costs, take the benefits in each alternative, and then recommend the least expensive.
For example, one system may have a ten-year life and $100,000 net return. Another may have
only a five-year life and a $60,000 return. On the face or it, the first is the better choice. Yet it
has only a $10,000 per year return, whereas the second has a $12,000 per year return. So the
latter example is the better one. On the other hand, should the costs of the second be all in the
first year, and the costs of the first be evenly spread, then inflation will make the first the best
choice.

It is also necessary to consider the risk factor. A system with a ten-year life is less precisely
estimated than one with a five-year life.

4. Outline plan of proposed system

To lay the foundations for subsequent planning and control of the development project, it is
necessary to prepare an outline plan. This will simply be a diagrammatic version of the
proposed system requirements.

5. Presentation of findings

The conclusions of the study investigation and proposals need to be presented in a way to
enable the steering committee to make decisions.

SYSTEMS ANALYSIS - DATA COLLECTION

Methodology
The first job is gather data about the existing situation. There are a number of techniques that can be
used:

! Interviews with user staff

! Questionnaires issued to affected staff

! Observation of the existing situation in operation

! Examination of archival documentation on the existing situation

26 Computing Within Organisations

© Licensed to ABE

Interviews and questionnaires enable us to ask affected staff directly what their perceptions of their
requirements are. In a large organisation, interviews can only be arranged with selected staff as each
interview takes a considerable time. Questionnaires are then useful when many staff are to be
canvassed. In each case, much preparation is required. Interviews must be constructive and
sensitively conducted and the setting of questionnaires is a skill in itself.

Observation of a working situation can be very informative. It is a good way of identifying
bottlenecks and such like. However, care is needed as most people work more diligently when being
watched.

Examining documentation can also be informative, as it will show what was originally intended by
the system. It also gives a good comparison for model overlay once a new model is built. You must
however be aware that the documentation will show a historical perspective, and not necessarily what
the system has evolved to.

Data Analysis
The next question is: ‘What facts are required?’ Typically these could be:

! Identification of the components of the system, (i.e. Products, personnel, departments,
and so on)

! Details of all relevant items such as code numbers, descriptions, values, quantities, etc.,

! Volumes of data, (i.e. The flow of documents, data flows and fluctuations)

! The degree of accuracy in measurements

! Sequential steps of the existing situation

! Existing standards

! Available hardware

! The environment details and the framework of which the system is a component

! Details of all storage media

! Any existing problems

! All exceptions to the normal situation

You will no doubt think of other features that could be included in the list, as all systems are dynamic
by nature. However, there is enough in the list to give you a sense of the range of the analysts’
investigation.

Next, the fact must be verified. The usual method of verification is to collect similar facts from more
than one source. It is surprising how often individuals give different versions of the same problem.
There are also statistical techniques available to check the data, but we do not need to concern
ourselves with these.

Data presentation
Now, assemble the collected facts into some meaningful form.

There are many ways of doing this but a diagram is normally the best form of communication, and
figure 2.3 is one suggested starting point for a warehousing operation. This is a block diagram. This
is a very general diagram with no specific notation. We use it simply to clarify the situation.

Computing Within Organisations 27

© Licensed to ABE

Figure 2.3: Block Diagram

Another useful diagram style is the spider diagram. This is a good way of identifying the important
components on one side of a page and so can be helpful when describing the system.

Figure 2.4, which is generalised here, shows at the top left, the development of the conceptual or
activity model and at the bottom left, the formal design structures required for the data and the files.
Top right are all the inter-departmental details, as few systems will be contained within one
department and bottom right, everything on files. It also shows how past errors and lessons are fed
into the structures and model, and that file requirements are used when setting the file structures and
that the conceptual model ideas are fed back into defining individual file requirements.

In this way we have a complete cyclical analysis.

Figure 2.4: Spider Diagram

S
U
P
P
L
I
E
R
S

Accounts

Purchasing

Warehouse

Sales

C
U
S
T
O
M
E
R
S

Payments

Invoices Invoices

Payments

Supplies Goods

Items bought Requirements

Availability Sales

Adverts

Orders

Orders

Data structures

The proposed
system

Conceptual design
model departmental

requirements
Lessons learned

Past errors

organisation

functional requirementsdata requirements

Individual file requirements

File structures

28 Computing Within Organisations

© Licensed to ABE

29

© Licensed to ABE

Study Unit 3

Systems Development and Project Management

Contents Page

Introduction 31

A. Approaches to System Development 31
The Traditional Approach 31
Structured Approach 31
Database Approach 35
Rapid Application Development (RAD) Approach 35
Participation 36

B. “Hard” and “Soft” Systems 36
Definitions and Examples 36
Application to Systems Development 37
“Soft” Systems Approach 38

C. Characteristics of a “Good” Systems Analysis Methodology 38
Client’s List 38
Criticism of User’s List by the Systems Analyst 39
Qualities of a Structured Specification 40

D. Selecting an Appropriate Methodology 41

E. Management of Change 41
Changes Resulting from Computer Systems 42
Planning for Change 43

F. Project Management 44
Establishment of Standard Procedures 45
Defining the Project 45
Project Manager’s Responsibilities 46

(Continued over)

30 Systems Development and Project Management

© Licensed to ABE

G. Problems During Development 46
Causes of Project Problems 46
Poor Project Identification 47
Insufficient Investigation 47
Incorrect Design 47
Inadequate Planning 47
Poor Project Management 48
Poor Programming 48

H. Rules of Project Management 48

I. Specific Development Controls 49
Documentation Control 49
File Restriction 49
Audit Trails 49
Amendment Control 50

J. Control Techniques 50
Activity Decomposition 50
Milestones 51
Software Engineering 52
Network Analysis 53
Use of Computers for Network Analysis 53
Documentation 53
Project Manager’s Role 56

Systems Development and Project Management 31

© Licensed to ABE

INTRODUCTION

We now start to concentrate on the development of computerised systems.

Computerised systems exist in one of two phases (development and operation) which together make
up the system life-cycle. It is important that we regard system development as lasting throughout the
life of the system. This is because a computerised system should always evolve and requires constant
maintenance. The two phases of the life cycle are:

(a) Development

! Define client requirements.

! Undertake feasibility study.

! Investigation and analysis.

! Requirements definition.

! Design and build.

! Implementation.

! Client acceptance.

(b) Operational

! Post implementation review.

! Maintenance.

In this study unit, we will take a broad overall view of this life cycle, concentrating on the initial
stages, and then consider the crucial management of the system project.

A. APPROACHES TO SYSTEM DEVELOPMENT
There are several approaches or methodologies that are used (although the trend nowadays is to avoid
the traditional approach):

! the traditional approach

! the structured approach

! the database approach

! the rapid application development (RAD) approach.

We will look at them in more detail.

The Traditional Approach
This approach should not be used in modern development. It is essentially computerising an
improvement on the existing system. Many of the defects are carried over to the new system and
there is no allowance for user involvement.

Structured Approach
This is an improvement on the traditional system in that the aim is to build a new and better system
and not just improve the old. It is, however, most applicable to large projects as it is essentially a
team approach.

32 Systems Development and Project Management

© Licensed to ABE

The technique is to use data flow diagrams and structure charts, with accompanying documentation,
to define a logical model of what is required, leaving the how of implementation until later.

The basic approach is:

(a) Investigate the current system to see what it achieves.

(b) Together with any new requirements, produce a logical model of the full specifications.

A logical model is a fully worked out and formally defined model of the proposed system. It specifies
what is required.

This specification is a very important detailed document as it forms the contract between the user and
the computer department.

Traditional specifications were too narrative and were often couched in computer terminology. This
made it difficult for users fully to understand the specification.

With the structured approach, using a largely diagrammatic form, the specifications are much more
easily understood. Such specifications aim to be graphic, concise, easy to amend and capable of top-
down development. Top-down development means that we start with the whole problem and identify
within it the component parts and parts of the parts. This builds a hierarchy of detail down to the most
basic level.

In order to identify the component parts, we use data flow diagrams, as in Figure 3.1, and from these
we derive structure charts as in Figure 3.2. Then individual modules or components of the structure
chart can be written up in design language called pseudo code or structured English, as in
Figure 3.3.

Systems Development and Project Management 33

© Licensed to ABE

Figure 3.1: A Data Flow Diagram for an Order Entry Function

34 Systems Development and Project Management

© Licensed to ABE

Figure 3.2: A Structure Chart for a System to Generate a Letter

(Note that this chart was not derived from Figure 3.1.)

The data flow diagram examines the sequences of processing involved. A broad-based diagram is
produced first and then individual parts of this first diagram are examined to give a high level of
detail.

The structure chart helps identify the individual modules that will require coding (programming).
This chart deals with a further level of detail and there will be many such charts.

Systems Development and Project Management 35

© Licensed to ABE

Yet another way to represent the logic is by pseudo code or structured English. Structured English
avoids words such as “would” and “should” and uses a very limited subset.

IF credit limit not exceeded

THEN OK order

ELSE IF pay experience good

THEN OK order

ELSE IF special clearance obtained

THEN OK order

ELSE Reject order

Figure 3.3: Pseudo Code

You will recognise a loose program format here. At this stage no specific language is considered and
further design work will be needed depending upon the eventual language used.

Once the logical model is produced to give the full specifications, and the pseudo-code level of detail
may or may not be included, the next stage is to derive a full design of the new system. The design is
not produced until the specifications are accepted by the user. The design need not be totally readable
by the user as it is a purely technical document; however, users must always be consulted and
involved. The design will mostly consist of structure charts and pseudo code.

We will return to the study of structured methods later in the course.

Database Approach
This approach is based on the idea that the basic building block of any system is data. This contrasts
with the structured approach which uses procedures as the basic building block.

The techniques of data models and normalisation lead to the implementation of database systems.
The theory is that a flexible database can be constructed to service all the needs of the applications
programs which require access. In this way, the database can be developed quite independently of
programs.

We will return to a study of database, and normalisation, in the next module.

The steps are:

! Investigation of the objects (data) and relationships that exist in an organisation.

! Analysis of the data and the building of data models.

! Conversion of the model to fit a database management system and database implementation.

Data analysis is part of systems analysis; it is not free-standing.

Rapid Application Development (RAD) Approach
Various techniques are involved in this approach, including:

! Joint development or active participation of the user client.

! Integrated software tools that support the development.

36 Systems Development and Project Management

© Licensed to ABE

Participation
All modern development approaches should require the full and active participation of the user client.

All systems developers should take into account the client’s requirements. Techniques such as
decision by consensus are advocated, which is very different from the approach where analysts and
designers dictate.

This approach is a design aid which assists implementation. It is not a problem-solving methodology.

At this point it will prove constructive to return briefly to general systems theory.

B. “HARD” AND “SOFT” SYSTEMS

Traditional sciences (physics, chemistry, biology) led to the discovery of common laws (e.g.
exponential decay) but are inadequate in explaining the behaviour of wholes. For example, can
biology explain the whole human being as a collection of parts (brain, heart, etc.), or is there
something more, called “vitalism”?

Definitions and Examples
The systems theorists have attempted to define systems. We previously looked at
deterministic/probabilistic, quantitative/qualitative etc. examples; one important definition divides
them into “hard” and “soft” systems.

! “Hard” systems are clearly defined systems with a single (or a low number of) aims/purposes,
e.g. an engineer in the real world.

! “Soft” systems exhibit changing or conflicting aims, very often including humans, e.g. the
political system.

As you will remember, a system:

(a) Is a complex grouping of people and machines.

(b) May be broken down into sub-systems which interact with each other.

(c) Is part of a hierarchy of systems.

(d) Must have an objective.

(e) Is capable of achieving its objective.

Some general examples of systems are the shown in the following table.

Systems Development and Project Management 37

© Licensed to ABE

Example Characteristic Class

Bridge/crystal Static Hard

Clock Predetermined motion Hard

Thermostat Closed loop feedback Hard

A cell Self-maintaining, adaptive Hard

Plant An organised whole Hard

Any animal Brain + learning ability Hard

Human behaviour Knowledge/language/responsive Soft

Financial department Predetermined Hard

Sales department Dynamic Soft

Application to Systems Development
In information technology, we generally come across “hard” systems. However, we should be able to
identify “soft” systems and not blindly apply our “hard” systems methodologies and expect them to
produce results.

Let us differentiate between “hard” (well-structured) and “soft” (ill-structured) problem situations:

SOFT SYSTEMS HARD SYSTEMS

Ill-structured Well-structured

Objectives: Vague, inconsistent, unrealistic Agreed and realistic

Organisation: Inhibiting, incompatible,
inadequate

Consistent and effective

Authority: Non-established, non-effective Established and effective

Environment: Unsustainable Defined and sustainable

Control: Unknown correlation between
effort and results

Measures of performance
can be set and applied

Communication: Uncertain, unreliable Reliable and effective

Information processing: Insufficient, irrelevant Necessary and sufficient

Attitudes: Obstructive Co-operative and flexible

Problem areas: Vague and poorly appreciated Agreed and appreciated

Solutions: Intuitive, poorly supported Known, consistent, relevant,
useful

In our approach to systems development it is tempting to regard the system as being “hard”, well
structured and precisely defined. Indeed, most of our available techniques are built upon this
assumption. In practice, the system will involve people and so, by definition, is inevitably “soft”, less

38 Systems Development and Project Management

© Licensed to ABE

well structured, generally vague and difficult to define precisely. A cautionary point is now needed
when considering systems development. All systems will have both “hard” and “soft” characteristics
and the latter must be incorporated. The participation approach to development is now very
applicable as it brings the user into the development process. Modern approaches consider it essential
that users are involved at all stages of development and tools have been introduced to facilitate this.
We shall return to this point in Study Unit 4 of the next module. Meanwhile, we can consider the
principles of this “soft” systems approach.

“Soft” Systems Approach
(a) Define the rich picture.

This is building up an in-depth portrait of the situation being considered. The source for this is
the people actually involved or who are to be affected. The rich picture will be presented
diagrammatically.

(b) Derive the root definition.

Essentially derive a definition of what the system is to do, why this is so and what is actually
wanted. Consider the whole environment and all the people involved.

(c) Build conceptual models.

Compile on paper or a screen a model of the root definition.

(d) Compare the conceptual model with the original rich picture so as to highlight any problems
between what is happening (the rich picture) and what is wanted (the root definition).

(e) Prepare a schedule for implementing (c) and dealing with problems identified at (d).

(f) Actually implement the changes. This will involve the people affected and obtaining their co-
operation.

In summary, the “soft” systems approach involves consulting at every stage with those affected and
obtaining their co-operation.

C. CHARACTERISTICS OF A “GOOD” SYSTEMS
ANALYSIS METHODOLOGY

Client’s List
Let us consider a list of qualities that clients have specified as desirable in systems development
methodologies, and then attempt to evaluate this in “systems approach” terms.

(a) Decomposition of the System

The systems we are concerned with are complex. Therefore some form of decomposition
appears to be fundamental to facilitate analysis.

With this approach, the developer is concerned with just one level of detail at a time; all
consideration of lower levels of detail is postponed. Breadth of consideration is more important
than depth at any level.

Systems Development and Project Management 39

© Licensed to ABE

(b) Limited Number of Elements to be Considered

It is suggested by psychologists that the human brain cannot efficiently handle more than seven
variables (ideas, thoughts) at one time; therefore coupled with the decomposition approach is
the idea of limiting the number of elements being considered at one time to about seven.

This restriction focuses the developer’s efforts on aggregating similar things and/or separate
things with differences, which increases understanding. By looking at seven elements, he or
she is forced to consider the relationships between these elements. This, as compared with
looking at only one element at a time, also increases understanding.

(c) Precise Definition of Boundaries

This concept requires that the analyst identifies all processes, data types, and relationships
between them, within the specific group of elements being analysed.

All that belong must be included; all that do not belong must be excluded.

(d) Analyse Activities and Data

Both the data and the activities should be analysed. The data is not an afterthought – it is the
primary consideration.

(e) Graphical Notation

Graphical language can be both simple and powerful in conveying information. Because of its
pictorial nature, it can show boundaries, activities, data types, relationships and the number of
elements within the boundaries.

(f) Simplicity

An important factor of the methodology should be that it includes an effective communication
bridge between the developer and clients. A graphical notation, with simple, uncluttered
diagrams can provide this.

Criticism of User’s List by the Systems Analyst
Such general lists are of value when assessing various development methodologies, but they must be
treated with great caution. The systems analyst would level the following criticisms at the client’s list:

! Decomposition and the study of a small number of elements in detail is a scientific reductionist
approach, rather than the holistic approach recommended by systems thinkers.

! Definition of boundaries seems a good idea in principle but boundary definition is rarely a
simple activity and we must avoid excluding potentially important items from a system in our
desire to draw a boundary.

! Many current methodologies make great claims to replace all text in the system specification by
a “simple graphical notation”, but there are a number of important elements that cannot be
shown by graphical notation, e.g. the human and behaviourist problems in the system.

! Discussion of notation, ease of modification and understanding are really about
communication, not analysis, and obscure the search for analysis methodologies.

40 Systems Development and Project Management

© Licensed to ABE

Qualities of a Structured Specification
These can be summarised as follows:

(a) Graphic and Concise

The structured specification contains pictures of the system, rather than large amounts of
textual description. Users are more likely to look at pictures than read a lot of text. Also,
designers are more likely to read it and understand it rather than ignore it and start again.

(b) Top-Down Partitioned

The system is broken into pieces that are as independent as possible, the user can then review
the system in small, digestible segments.

The partitioning is done in a top-down fashion to show broad, general views of the system,
followed by narrow, detailed views of a “local” area.

(c) Maintainable

The specification document is highly maintainable. Because of the graphic, partitioned,
structured nature of the specification, modifications can be made quickly and easily (structured
programming).

(d) Non-Redundant

In the structure specification, a piece of information is recorded once and once only. This
non-redundant aspect ensures consistency and easy updating.

The user does not get bogged down in repetitious detail.

The designer can readily identify system components and then translate these into areas to be
designed.

(e) Easy to Change

As diagrams go through many revisions during the analysis phase, it is important that they are
not difficult to redraw. If they are simple combinations of lines and boxes with very few words,
they will meet this objective.

(f) Numbering System

Closely related to this characteristic of ease of change is the system of numbering the different
diagrams – as well as the different generations of each diagram.

(g) Defined Procedure of Use

The methodology should have a debugged, “prescribed” method of use – including suggestions
on how to decompose systems.

The various types of user (analysts, designers, clients, programmers, managers, etc.) should all
have the same understanding of the use, to the level of detail that their job requires.

(h) Leads into Design Method

There should be a natural way to move from the structure for displaying requirements to the
design structure for the new system.

Systems Development and Project Management 41

© Licensed to ABE

D. SELECTING AN APPROPRIATE METHODOLOGY

A valuable way of choosing a development methodology might be:

(a) Examine what the methodology claims to do, and where it suggests that it is useful.

(b) Assess whether the situation is appropriate for use of this methodology.

Possible situations are:

! No current system exists.

! Current system exists but design only needs tuning.

! System exists but is very “soft” and ill-defined.

The question of which approach to use is very difficult. However, we can classify the system as
“hard” or “soft” and this then leads us into appropriate approaches, as illustrated by Figure 3.4.

Problem

“Hard” “Soft”

Physical models Logical models People Fuzzy objectives

TRADITIONAL STRUCTURED RAD

PARTICIPATION

GO BACK TO
USER FOR

CLARIFICATION

Figure 3.4: Decision tree for assessing appropriate solutions

E. MANAGEMENT OF CHANGE

A good deal of research and survey results confirm that, in practice, human problems are a major
cause of failure in the effective development and management of computer systems.

! A technically feasible application may still collapse in operation. The reason could be
ignorance, antagonism or sheer apathy on the part of user staff.

! Line managers may look upon change as a threat or merely as unhelpful, and withdraw their co-
operation with the system. Managers have been known to “beat the system”. For example,
with a computer-based stores and spares system, they requisition for unusual specifications
instead of making existing ones suffice, and build up the level of their stocks artificially
through increasing the number of “lost” and “damaged” parts reported.

! Other managers may simply ignore the new system and continue using the former system –
they may regard the new system as a waste of paper.

42 Systems Development and Project Management

© Licensed to ABE

! We may also discover human problems which relate to the computer specialists. This often
occurs, as the specialists tend to follow their own technical objectives and do not consider the
overall corporate interest.

Sometimes these problems are, wrongly, treated as relatively temporary and unimportant. But most
writers on this subject consider that it is very important to realise the complexity of such problems and
to develop a planned strategy for the management of change, supported by continuous training.

Changes Resulting from Computer Systems
Some typical changes arising from the introduction of a computer system will be as follows.

(a) Changes in Relationships

Traditional assumptions are invariably challenged when a new system is envisaged and, when
weaknesses are revealed, management will often feel resentful and less secure. Also managers
involved may find that they have a heavier workload as a result of the change to the computer
application, perhaps forcing them to neglect other matters.

On the other hand, the computer may sometimes be looked upon as breaking down traditional
departmental and divisional barriers, the formation of project teams obliging personnel to work
together.

(b) Changes in Controls

The system may be regarded as too rigid to be able to deal in practice with the many variable
elements involved. But, it may also be that the organisation finds, for example, that the prompt
and thorough market analysis made available by the computerised system leads to an increase
in its market share.

On the other hand, management could be overwhelmed by the new data outputs, so that
managers still secretly rely on the former, trusted system.

(c) Changes Relating to Organisation

Greater centralisation of decision-making is possible through the existence of the computer
system. Maintenance of, say, customer accounts may be removed from the branches of an
enterprise and undertaken in regional centres.

(d) Changes in Planning Activity

Planning may become a day-to-day activity whereas formerly it was an annual budget
preparation exercise, so that the budget can now be recast to give the effect of pricing policies,
actual performance and so on. Managers previously using the pragmatic planning approach
may tend to feel that the system is in charge of them, as planning activity programs, scheduling
and procedures become more exact.

(e) Inflexibility

One main alteration brought about is that the computer system is very often guilty of giving rise
to rigid inflexibility. People cannot now behave on a “give and take” basis. Rules are now
operated, quite irrespective of the circumstances. Much higher standards of accuracy and
discipline generally bring about resentment – and, it must be added, much pleasure from staff in
uncovering computer errors.

However, a good deal does depend also upon past relationships. Where these have been first-
class between management services staff and the other personnel, then there is more than a

Systems Development and Project Management 43

© Licensed to ABE

good chance that this will give a flying start to management services work on the computer
system.

Planning for Change
There are various ways of expressing this, but the following is a typical series of stages towards
planning the change:

! commitment and approval of senior management;

! comprehension of the fundamental behavioural issues;

! objective clarification, manpower resources;

! creation of effective communications;

! growth and renewal planning;

! constructive use of a “change agent”.

Now let us consider these separately.

(a) Senior Management

The commitment – as well as the approval – of senior management is important. Quite apart
from the formal approval which has to be achieved in any case for the change involving the
computer, management attitude and philosophy can make or mar the results. It must be realised
that simply instructing people as to the pattern of behaviour expected from them will not
produce the desired results.

During the feasibility study, management will have manifested its interest and will now already
be aware of the considerable benefits planned for the organisation as a whole. Comparable
computer installations will have been visited and discussions held with senior persons on other
management implications of the computer.

Senior management will require the same stringency of planning, control and budgeting for the
computer installation as for any other commercial activity. What is also important is that senior
management should provide both the organisational and manpower resources for the project to
be a success.

(b) Behavioural Issues

A deliberate learning strategy should be adopted to make sure that computer structure,
relationships and values, plus technical and economic feasibility, are relevant. Remember the
nature of motivation and the need for:

! self-actualisation

! esteem

! love and “belonging”

! safety

! psychological satisfaction.

Computer department labour turnover is often discovered to be high. Research points to the
fact that this is because the needs for esteem and for self-actualisation are often not satisfied.

Another consideration is user satisfaction. Users often think the computer will eliminate their
recognition and status if not their actual work. Whilst this is sometimes counteracted by the

44 Systems Development and Project Management

© Licensed to ABE

sense of achievement in using the computer, this in turn can pass after the initial impact of the
computer.

(c) Human Resources

The sort of questions to be asked here are:

! How many computing specialists, and with what experience and skills, will be required?

! What internal promotions may be made?

! Is there sufficient awareness of achievements, expectations, knowledge and skills of our
own personnel to plan succession and careers development?

! What sort of skills and knowledge will non-specialist management need in relation to the
computer if they are to co-operate and contribute within the planned applications?

! What is to be done concerning training?

(d) Effective Communications

This, in itself, is a big question. It, too, requires a complete analysis and a clearly expressed
plan. The question is how to ensure that everyone knows what he or she must do concerning
the installation, how it is going to affect them, how it is now progressing, and so forth. Not
only are we concerned about vertical communications (that higher levels actually listen to or
consider the contributions of lower levels) but also about horizontal communications
(especially between computer people and line management).

There are many possible approaches, ranging from visits of personnel to the computer
installation to regular progress bulletins and items on management agendas.

(e) Growth and Renewal Planning

This refers to the fact that using the computer intelligently will mean a continuing process of
increasing awareness and a renewal of purpose. The original objectives, assumptions and
communication systems – sound enough for the early applications – may well have to be
changed because they have become outdated and inappropriate.

(f) Use of a Change Agent

This may be an external element – a consultant or other person who acts as a catalyst and who
provokes thought, reassessment of ideas, and criticism.

F. PROJECT MANAGEMENT

An alternative title to “project management” is “project control”. By this change we can see that the
whole purpose of the management of a project is to keep control of the project. As such, all the
normal principles of any control system will apply:

! Pre-set a standard. In our case of a project, this will not only be a quality standard, but it will
involve a schedule and a cost. It must also have the requirements specification as part of the
standard.

! Arrange a flow of feedback. In an earlier study unit we discussed milestones or checkpoints.
At such points, development staff will submit reports of results obtained, time taken, costs
involved and objectives achieved. Reports will also be submitted at specified time intervals.

! The project manager makes a study of the feedback and makes a comparison with the pre-set
standards and with the project plan. Any variations at all are taken into account.

Systems Development and Project Management 45

© Licensed to ABE

! A response or corrective action will be made depending upon the comparison.

Establishment of Standard Procedures
By controlling the preparation and use of documentation, an organisation is able to achieve the high
level of quality and reliability needed by users of its systems. It is thus important to establish and
enforce a set of standard procedures for the development and operation of systems.

Standards are uniform practices which govern the methods by which systems are developed and
operated and, further, they provide a basis of assessment for both system and personnel performance
in terms of quality and quantity. They are decided upon jointly by the manager and user department
staff, and cover areas like:

! computer operations such as log procedures, staff responsibilities, operating procedures;

! ancillary operations such as data preparation, control and job specification;

! system development topics such as guidelines, file usage, test data, audit trails, documentation
and standards.

Project control is a very complex task. There are no routine activities involved. All problems tend to
be unique. It is a “one-off” situation as no two projects are the same. To add to the complexity, in
many instances, the project staff are working together for the first time outside the established
organisational structure. Line management relationships are upset and yet the project manager is
unlikely to have the authority to hire and fire staff. Strong leadership is called for.

Defining the Project
A major problem is the control of application development time and cost. For successful control of
projects there has to be a project plan and structure defined clearly from the very start. If the project
is a large one, then it ought to be divided and subdivided into modules. These could then be arranged,
by analysis, to establish points for checks (“milestones”). Each milestone should have a visible output
(e.g. a document) which may be used to determine the quality of output produced at that given point
within the development cycle.

In project control the manager is attempting to find answers to questions such as:

(a) Cost

! What will be the total estimated cost of the project?

! To what extent is actual project cost to date higher or lower than estimates?

(b) Timing

! Is the project correlating with schedule?

! At what point is each activity scheduled to begin?

! How long (estimated) is the project to take?

! To what extent is the project now on time?

(c) Human Resources

! What number of staff is needed?

! In what way should assignments be allocated?

! What skills are required?

! What other resources (e.g. machine time) are required?

46 Systems Development and Project Management

© Licensed to ABE

Project Manager’s Responsibilities
! Co-ordination, administration and supervision of the team.

! Co-ordination of all elements in the development of the project activity schedule, critical path
network, etc.

! Securing of approvals necessary.

! Distribution of the approved schedule and reports to all persons affected.

! Keeping of necessary records and a history of the project.

! Attainment of system specifications.

G. PROBLEMS DURING DEVELOPMENT

The development of a computer system is very often a long and complicated exercise, involving many
staff and other resources in a highly organised manner. The costs of such an exercise are high.

With such a complex project, problems are inevitable. The skill of the project team is required to
identify project problems and find solutions before the problems become major and jeopardise the
total project.

Causes of Project Problems
When any project “goes wrong”, it is all too easy to blame the staff who are working on it. It is
exactly the same with computer projects.

When a project “goes wrong”, the symptoms are:

(a) late running;

(b) cost escalation;

(c) general loss of control

Very often the causes are:

! poor project identification

! insufficient investigation

! incorrect design

! inadequate planning

! poor project management

! poor programming.

It is unfortunate that, as a result of poor project management, most problems are identified towards
the end of a project, in system testing. The problems then result in program amendments and a great
deal of programmer time is expended. As a result, substantial effort is made to improve programmer
productivity, getting nowhere near the root of the problem. It is likely that the problem began much
earlier in the project cycle.

Let us take a closer look at the causes and examine ways in which we might overcome them.

Systems Development and Project Management 47

© Licensed to ABE

Poor Project Identification
For example, suppose a despatch department is taking too long to pack goods for delivery. The
development team could prepare a system of great efficiency. However, if they have overlooked the
real, original problem of products being placed on the wrong shelf, they will only bring themselves
into disrepute however well the project progresses from that point. If a system perpetuates a manual
problem then computerisation will only speed up the mess.

It is necessary, therefore, to spend time identifying the real problem. This work needs to be done by a
senior and experienced analyst.

Insufficient Investigation
Having identified the real problem, we must ensure that we understand it. A thorough understanding
of the problem can only be obtained by detailed investigation.

This investigation is often limited to a series of interviews with staff, proposed by the potential user of
the system. The analyst conducting the investigation, therefore, obtains an understanding of the
system as seen by the person interviewed. This could be a very biased view; what person is going to
admit his or her laziness at completing the documentation correctly? The analyst must, therefore, use
the complete range of investigation techniques. The essential point to remember is, that if a full range
of techniques is not considered, then insufficient investigation will lead to a poor understanding of the
problem.

Incorrect Design
This is where the technical expert takes over. The business analyst has completed his or her task.

The objective of the design work is simplicity and flexibility. Simplicity in that “a sledge-hammer
must not be used to crack a nut” and flexibility to ensure that any future extensions to the proposed
system do not create problem projects.

In practice, at least two, and ideally three, designs should be produced. The designs should then be
validated against the objectives set in the initiation stage and, with the user’s involvement, a decision
reached as to the design with which to proceed. There is no correct design; any solution which meets
the objectives and can be justified is acceptable.

Inadequate Planning
A computer project requires a large variety of resources: business analysts, system designers,
programmers, trainers, computer power, transport, data preparation, users, etc. The project will
require many more resources in the middle and slightly more at the end than at the beginning. While
we could strive for continuity, it is likely that team members will change, especially in a long-running
project.

This complex requirement for resource types demands an accurate plan of what resource is needed,
when it is needed and for how long. Without such a plan, which must be updated, reviewed and
amended as the project progresses, there is little chance of having the correct resource at the right time
for the required length of time. The project time-scales will, therefore, increase, leading to a general
loss of control. Careful planning is perhaps the most important activity of any project, and should be
undertaken by the most experienced staff.

48 Systems Development and Project Management

© Licensed to ABE

Poor Project Management
It is likely that the project manager will be the project planner. A poor project manager may,
therefore, (but not necessarily) be a poor planner. An experienced computer professional could be an
excellent, diligent planner but a very poor manager.

If we are to have high quality work, we cannot have the members of the project team inventing rules
independently. Once a plan has been established we must adhere to it. We must also adhere to the
standards laid down for a particular task, whether that be design, programming, documentation, or any
other.

If we are going to have ground rules – which we must have to ensure that information is disseminated
in a coherent way – then they must be enforced.

A strong leader or project manager is, therefore, necessary.

Poor Programming
This problem area is probably the least troublesome. If a program is not completed properly in terms
of testing or documentation, then this should be quickly identified, and provided that good,
experienced programmers are available, can be quickly corrected. The most likely cause of problems
at this stage is either poor initial planning or extended project times before the commencement of
programming, resulting in hurried, insufficient testing.

In fact, many good programmers, by asking questions and probing deeper into systems, identify
problems from earlier stages within the project.

H. RULES OF PROJECT MANAGEMENT
The foregoing, then, are some of the reasons why projects “go wrong”. Let us complete the picture by
providing a summary of ground rules to guard against such situations arising.

! A computer project needs to be set up correctly at the start – ensure proper planning takes place.

! Get a slow start to ensure you solve the correct problem.

! Structure the project team so that the lines of communication are clear and the project manager
can obtain a second opinion.

! Establish clear ground rules and enforce them.

! Pick the right size of project – the smaller the project, the better the chance of success.

! Choose the right project manager.

The above list is, of course, not exclusive. It is more than likely that your project will run into trouble
at some stage and it is the skill of the project manager and his or her team which prevents problems
becoming major hurdles by anticipating them and dealing with them promptly.

The list below sets out in a jovial manner the “Laws of Project Management”:

(a) No major project is ever installed on time, within budgets, with the same staff that started it;
yours will not be the first.

(b) Projects progress quickly until they become 90 per cent complete. They then remain at 90 per
cent complete forever.

(c) One advantage of fuzzy project objectives is that they let you avoid the embarrassment of
estimating the corresponding costs.

Systems Development and Project Management 49

© Licensed to ABE

(d) When things are going well, something will go wrong. When things just cannot get any worse,
they will. When things appear to be going better, you have overlooked something.

(e) If project content is allowed to change freely, the rate of change will exceed the rate of
progress.

(f) No system is ever completely debugged: attempts to debug a system inevitably introduce new
bugs that are even harder to find.

(g) A carelessly planned project will take three times longer to complete than expected; a carefully
planned project will take only twice as long.

(h) Project teams detest progress reporting because it vividly manifests their lack of progress.

I. SPECIFIC DEVELOPMENT CONTROLS

These are four very specific areas which are crucial to project control. Adherence to these points will
always make project management more effective.

Documentation Control
Documentation covers all aspects of systems development, from the initial problem outlined in
layman’s terms to the detailed program listings and finally to the comprehensive user manuals.

In a later study unit we will look at documentation in detail. From the project manager’s point of
view, detailed paperwork will not only aid project monitoring, it will help development staff. For
example, full design instructions and explanations will ensure program coding consistency and faster,
more efficient coding at that. Project management should therefore rigorously insist on development
staff keeping up-to-date documentation and filing of the documentation, at all times.

Later in the project life-cycle, efficient maintenance is totally dependent upon the earlier
documentation. This is because different personnel are involved and they will have no knowledge of
the system design.

File Restriction
Development staff should never be allowed access to live data files. Inevitably such files would
become corrupted. In addition, restrictions on the use of and access to sensitive files should equally
apply to the development staff.

Work should only be allowed to be performed on data files created from live files, the creation of such
files being carried out by non-development staff. Alternatively, if this is not possible, dummy files
should be used.

Audit Trails
During development, paths should be created which will trace the operations being performed on
source data. Source documents with consecutive or unique identifiers should be listed on entry and
again in final tabulations. Programs should be capable of being “frozen” in mid-operation to allow
enquiries of the current state of data. File dumping to printer and display units should be catered for.

Such features should not, of course, be confused with the audit trails built in by the system auditors.
We will discuss these in a later study unit.

50 Systems Development and Project Management

© Licensed to ABE

Amendment Control
Any amendments made during development and maintenance should be logged in the system
documentation. For example, if a particular file is deleted from use, then all references throughout the
document should also be deleted.

As amendments can significantly alter the way a system works and the controls upon the system, all
amendments should require authorisation, however small.

The authorisation form can then be part of the documentation.

J. CONTROL TECHNIQUES

First of all, it is important to be aware that, although planning ahead is the most important project
control technique, it is not the only one. Figure 3.5 shows the relationship between planning and the
other processes.

Figure 3.5: Processes in a Project Life

Activity Decomposition
When monitoring the project, we will need a clear idea of all the tasks within the project. It is an
important project control technique to decompose the broad activities of investigation, analysis,
design, etc., into task lists.

Task lists should be as detailed as possible. Tasks to be performed in the near future should be
decomposed into smaller units than those which are planned for later completion. For example,
programming tasks should be shown by individual program, but it will not be possible to do this until
system design has been completed.

MANAGE THE
PROJECT

MONITOR THE
PROJECT

PLAN THE
PROJECT

DO THE
PROJECT

Rules
Plans

Plans

Performance
assessment

Performance
assessment

Achievement

Directives

Systems Development and Project Management 51

© Licensed to ABE

Examples of task lists:

(a) Investigation Activity

! Plan interviewing.

! Develop interview guides.

! Make appointments.

! Conduct interviews, gather volumes and samples.

! Summarise interview notes.

! Document investigation findings.

(b) Systems Analysis Activity

! Review all material gathered.

! Draw data-flow diagrams.

! Analyse the data and construct a data dictionary.

! Identify the scope of the new system.

! Define the essential procedures and data.

! Present results to user:

(i) Arrange time, place, attendance list.

(ii) Plan presentation.

(iii) Draw diagrams/slides.

(iv) Rehearse.

(v) Conduct presentation.

! Finalise documentation.

Standard task lists should be constructed for all the activities in the development cycle. Each task list
can then be used in conjunction with the project detail to arrive at a specific task list for the project.

Milestones
A milestone occurs when a task or a major series of tasks has been completed. The major project
milestones where major decisions are required, e.g. feasibility analysis, analysis/design,
design/testing, testing/changeover, etc., have already been identified.

Milestones or checkpoints are used by the project manager, the computing management and the user
management to enable them to conduct formal reviews of progress.

A suggestion for the major checkpoints in a development project is shown in the following table.

52 Systems Development and Project Management

© Licensed to ABE

Table 3.1: Major Milestones

Completion of Task Project
Manager

Computer
Management

User
Management

Objectives/Terms of reference x x

Feasibility report x x x

Project planning x x x

Investigation
Plan interviewing x x
Develop interview guides x
Summarise interview notes x
Document investigation x

System analysis
Draw data-flow diagrams x
Data dictionary x
Plan presentation x x
Rehearse x x
Finalise presentation x x
Conduct presentation x x x

System design
Outline design x
System specification x x x
Program specification x
System test plan x x
Conversion plan x x x

Implementation
Individual programs x
Completion of programming x x
System test x x
File conversion x x x
Parallel operation x x x
Live start-up x x x

Software Engineering
The disciplines and procedures used to develop software for an information system are called
software engineering methods and a set of procedures used from the feasibility stage to the operation
of the system is called a software development methodology. A number of techniques and computer
tools have been developed.

Systems Development and Project Management 53

© Licensed to ABE

Network Analysis
Network analysis is a particular technique for use in project planning and control. It first attracted
attention through its use in the development of Polaris rockets in the USA. Some network analysis
methods select the more critical or strategic elements of a plan and concentrate mainly upon them –
this is critical path analysis. Another term is PERT – Project Evaluation and Review Technique.

The first operation of the technique is to prepare a list of the activities with the time each will take
and, for each activity, to define what other activities must be completed before that particular activity
can be started. The resources needed for each activity will also be noted – if, for example, the
development team has only one expert database designer, this could be a critical resource.

Just as there are a number of names for the technique, so also there are a number of different ways of
drawing the network which shows the relationship between the different activities. The important
items to be identified from the network are:

! The critical path which indicates those activities which, if not completed within their defined
duration, will cause the overall completion to be delayed. They are, therefore, the activities
which need closest control.

! The “spare” or float – for activities not on the critical path there is a certain amount of latitude
permissible in which they actually start and how long they actually take, provided they do
finish by the latest time.

The existence of float in the network gives the project managers some freedom of action in the
planning of the network, permitting, for example, some reduction in resource demands.

The converse of this argument, of course, is that activities on the critical path merit adequate or even
additional resources.

A further consideration is the analysis of the resources required for each activity. Each activity will
need so much manpower and possibly the use of equipment. The allocation of appropriate resources
to each activity permits a “profile” of resource demand to be built up. This will reveal peak periods.
The network can then be reassessed in an attempt to reduce or eliminate these peaks.

Use of Computers for Network Analysis
Many small networks can be handled manually but, for large networks, the computer produces many
benefits. In practice, there may be thousands of activities represented in a network and many of these
will depend on more than one activity being completed. There are many computer packages available
and these permit fuller use of the network in appraising different plans, minimising resources,
progressing work, etc. – they are examples of a software engineering tool. Modern PC-machines are
increasingly being used in this and related areas as a cost-effective tool for use by management.

Documentation
(a) Project Plan Form

Once authorisation to implement has been received, the manager assigns a schedule, allocation
of staff, miscellaneous costs and operations cost to every activity, through use of a project plan
form. Such a form is shown in Figure 3.6.

54 Systems Development and Project Management

© Licensed to ABE

Fi
gu

re
 3

.6
:

Pr
oj

ec
t P

la
nn

in
g

Fo
rm

Systems Development and Project Management 55

© Licensed to ABE

(b) Staff Production Report

This gives the projects worked on, the kind of activity and staff hours (see Figure 3.7).

PRODUCTION BY MEMBER OF STAFF

Staff
No.

Employee Name of project worked upon Code Hours

008 John Idler Sales invoicing 11 12
Stock control 15 9
Stock control 11 13

Total accountable hours: 34
Total non-accountable hours: 3

025 Henry
Workman

Payroll system 09 45

Parts system 03 26

Total accountable hours: 71
Total non-accountable hours: 3

Figure 3.7: Staff production report

(c) Project Activity Report

This shows actual cost expenditures and timings by project activity (see Figure 3.8).

PROJECT ACTIVITY REPORT

Project name: Project manager:

Date:

MAN-HOURS MISCELLANEOUS COSTS
Activity Scheduled

Completion Est.
Hours

Actual
Hours

Variance Est.
Cost

Act. Cost
to date

Variance
to date

£ £ £

Figure 3.8: Project activity report

56 Systems Development and Project Management

© Licensed to ABE

Project Manager’s Role
The project manager must accept complete responsibility for the achievement of the objectives of the
project and he or she does this through leadership and through adopting the initiative in project
management:

(a) Planning of Main Activities

This means identifying project activities and functional responsibilities.

(b) Scheduling of Activity

Here, there is identification of detailed activities and their interrelationships in timings,
resources and sequence.

(c) Continuous Control of Project

Under this heading there is allocation and co-ordination of:

! assignments

! resources

! current project status maintenance

! documentation

! project problems in timing.

(d) Progress Reporting

There has to be preparation, and distribution, of milestone progress reports, including those
concerning progress to completion date.

(e) Summary Recommendations and Reports

The preparation and appropriate distribution of regular summary reports has to be undertaken
concerning:

! performance of the project

! intermediate objectives achievement

! interim recommendations.

57

© Licensed to ABE

Study Unit 4

System Specification

Contents Page

Introduction 59

A. The Development Life Cycle 59
Key Points and their Output 61
The Importance of Documentation 62

B. Specification of Requirements 62
System Selection 63
The System Environment 64
The Initial Study 64
User Involvement 65

C. The Personnel Involved 65
The Computer Professionals 65
Users as Clients 67
Computer and User Staff Relations 69

D. Systems Investigation 71
The Scope of Fact Finding 71
Interviewing 74
Observation 76
Questionnaires 76
Existing Written Material 78
Sampling 78

E. The Feasibility or Initial Study 79
Aims 79
Determining the Main Requirements of the System 80
Considering Alternatives 82

(Continued over)

58 System Specification

© Licensed to ABE

Cost/Benefit Analysis 82
The Report 83

F. Using Consultants 84

System Specification 59

© Licensed to ABE

INTRODUCTION

You should now have a general picture of the type of methodologies used for system development and
of the overall management of the process. There is a wide choice, though, in practice, each
organisation will have a favoured or preferred approach which has evolved through the experience of
the systems manager and his or her predecessors, the nature of the organisation and the environment
in which it operates. It is also important to be aware of the whole system into the sub-system under
development will fit, even if the sub-system is extremely large itself. Remember, few systems exist in
isolation.

Whatever methodology or approach is used, the system must undergo some definition process. We
touched on this earlier when we were discussing computing systems, the role of steering committees
and so on. This is an important topic, so we will return to the study of the first project stages and
examine the specification of a system through the initial investigation and feasibility study.

First of all, though, we briefly review the whole development process.

A. THE DEVELOPMENT LIFE CYCLE
We have already looked at the life-cycle stages earlier. Figure 4.1 repeats these and shows how the
stages are interrelated and how the whole cycle constantly involves referring back and going back to
what has already been done.

(a) Work should proceed in orderly steps, with the output from each step being checked against the
definition of that step before work proceeds.

(b) Notwithstanding the point made in (a), there must be some recycling, reworking of a previous
stage in the light of subsequent work. There must be constant referral to the requirements
specification. In other words, it is an iterative process.

60 System Specification

© Licensed to ABE

Feasibility
Study

Requirements
Specification

System Design

Detailed
Design

Programming

System Testing
and

Implementation

System
Operation and
Maintenance

Figure 4.1: System development life cycle

(c) If the system is to be provided by an outside supplier, then Figure 4.1 can be reduced, as shown
in Figure 4.2. But, remember, if the supplier is providing a tailor-made system, the purchaser
should monitor progress, since the three stages of system design, detailed design and
programming will have to be carried out by the supplier and, during these stages, there should
be continuous feedback on how the work is progressing, whether any snags have developed,
how costs and time-scales are matching up to budget, etc.

System Specification 61

© Licensed to ABE

Feasibility
Study

Requirements
Specification

Supplier:
System design
Detailed design
Programming

System
Selection

System
purchase/

commission

System Testing
and

Implementation

System
Operation and
Maintenance

Figure 4.2: System development life cycle (with external support)

Key Points and their Output
There are certain key points within the life cycle, for example:

! Agreement of the specification of requirements, which should be clear, consistent and
unambiguous to users as well as computer specialists.

! Systems testing and hand-over to the users.

These key points must be clearly defined and the output of each stage needs to be:

(a) specified before work starts; and

(b) agreed as fulfilling this specification before the stage is completed.

This production of specified items at each stage shows everyone how progress is being made, but it
also highlights any areas where problems might develop.

62 System Specification

© Licensed to ABE

Particularly with the development of software, it is most important that errors are discovered as early
as possible. An error found at the operational stage can cost fifty to a hundred times as much to
correct as if it had been found at the design stage.

Key points are sometimes called milestones and it is important that their position, and what is to be
delivered at that stage, are agreed with both purchaser and supplier. Purchaser and supplier may both
be within the same company; for example, user department and computer department. If the supplier
is external, it is important that the actual people who will eventually be using the system are involved
in its specification and acceptance.

The Importance of Documentation
Documentation should be going on in parallel with the other activities and, at least at the early stages,
documents will be the items produced as output. These will need to be referred to at later stages. For
example, the requirements specification will need to be checked against parts of the feasibility study
and any major changes in plan discussed and agreed. This requirements specification will be the basis
against which the design is checked. This does not mean that, once agreed, there can be no changes to
the specification. Work carried out at the design stage may show how improvements can be made.
The specification, after full steering committee and user consultation, will be altered to accommodate
the improvements.

B. SPECIFICATION OF REQUIREMENTS

The first stage of all development cycles is a statement of requirements from the eventual user
department.

This should state what is required both functionally and financially. It does not suggest how these
requirements will be achieved.

It is also known as the user requirement document.

The first section will contain a general description of the system which has to be designed. It will act
as a general guide to the rest of the document, giving an overall picture of what is needed.

(a) What is the system expected to do?

A precise and full statement of the objectives of the system is contained in this section. Mere
generalisations are insufficient. Wherever possible, the objectives should be given some
measure so that the success of the system, when operational, can be assessed.

(b) Who will use the system?

It is always important to identify clearly the eventual owners of the system. This is likely to be
a department. The department will be responsible for accepting and approving each stage of
development and they also act as the primary point for involvement and consultation of the
users with the development team.

(c) What is the minimum the system must do?

It is important for the user department to specify the minimum requirements. This is also useful
for the future, as it gives a better outline of the requirements and keeps the designer from
developing an over-complex system that does as much as possible rather than just what is
required.

System Specification 63

© Licensed to ABE

System Selection
There are series of factors which need to be taken into account in identifying the system for
development:

Size
Relevance/
volume of

work

Philosophy
of the firm

Personal
influence

Advisory
influence

Supplier
influence

Initial study

Feasibility study

Figure 4.2: Influencing factors in system selection

We already know that computers can do repetitive jobs very accurately and quickly, provided they are
given a suitable list of instructions – the program. In addition, large volumes of work provide even
greater savings when carried out on computers. Therefore, jobs that come within these parameters are
top of the list for consideration. In effect these criteria can be regarded as the fundamental “building
blocks” for the study.

After these initial considerations we need to look at the future plans of the firm. How much
expansion is anticipated in terms of output volumes, staff numbers and so on? After all a computer
can sometimes be justified by allowing expansion without increasing staff to handle it.

There is yet another reason to consider! If all your records are kept manually, it is likely that they will
be filed in a specific sequence. What happens if you require information to be extracted from them?

At best it involves your staff in selectively collecting the facts by laboriously searching through every
record. At worst the information may take so long to collate that its use becomes nullified –
remember what we said earlier about the timeliness of information? In such a case you don’t bother
to ask. The facts are there, somewhere; the information is theoretically available; unfortunately cost
and time make its retrieval impractical.

So here is yet another area where a computer could possibly help your business – producing accurate,
timely information that would either be difficult or impossible to retrieve without the speed of modern
computer systems.

Let us summarise what we are looking at at this early stage:

! Ways in which the computer can help in your processing. This does not necessarily mean that
the computer will take over completely – it may merely complement your staff.

! Operations which involve the frequent copying of data from one source to another, particularly
if complex searching and sorting is involved.

! Routine work, particularly large volumes, which is carried out frequently in an identical way.

! Individual staff workloads – are some staff experiencing “peaks” which stretch them to their
limit?

! Security – are checks on accuracy being omitted or non-existent because of the
demands/limitations of the existing system?

64 System Specification

© Licensed to ABE

! Any areas where information is not available or available too late for it to be used effectively.

! Speed – can the speed of response be useful in providing a better service whereby queries are
answered “immediately”?

The System Environment
The need for a new development will be formulated within an existing environment, and it is
important to have an understanding of that environment at the outset.

We have already considered many of these factors, but it will be useful to gather them together under
three socio-technical, environmental headings.

! Economic

Economic factors centre around the expected increase in profitability and/or improvement in
both internal and external services provided.

Reports should use actual factual values rather than “vague generalisations” – there are of
course categories of improvement which, by their nature, are difficult to place a tangible value
upon.

! Technical

Technical considerations can be subdivided into those which affect the firm and those that
relate to the computer – its operating constraints and environment. It is important that the
organisational considerations include all aspects of the new system – those which are to be
carried forward from existing systems and those that will be introduced as a result of the new
system.

Aims must be stated explicitly so that no ambiguity can possibly interfere with anyone’s
understanding of them. Computer constraints can be said to relate to the technical aspects of
the system such as system design, programming language used and so on. Reports will not deal
with these considerations alone – they would represent a consensus between the firm’s
management and the computer specialists.

! Social

The third consideration, social, is often very difficult to quantify because it involves such issues
as job satisfaction and industrial relations. Nevertheless, it is important to indicate in some way
the expected effect in these areas.

The Initial Study
It is the initial study which is used to formulate the user requirements of the new system.

The initial study will be conducted by a small team consisting of the designated project manager, a
senior user department manager and, possibly, an accountant. The actual composition of the team is
not important, although it will be quite senior.

The project manager will need to gain the confidence of the staff – in other words get the staff on his
or her side. This will have several benefits – staff will feel less threatened by the impending changes
and will give more co-operation. The project manager will be wary of making educated guesses at
what the outcome will be – people, being human, will often feel that an incorrect guess was
deliberate. On the other hand, if staff on the current system are really heavily loaded, it may be
possible to say that there will be no redundancies – a fact that could make a great deal of difference to
people’s attitudes.

System Specification 65

© Licensed to ABE

User Involvement
This is another aspect that we have already discussed, and we will return to it again. However, it is
probably one of the most important features of modern system development, and it is, of course, of
particular importance at this early problem definition stage.

It is essential for the potential user of the future system to work with the system analyst from the very
beginning. This provides clear advantages, including:

! acceptance of every stage of the development;

! ensuring the design meets the user needs;

! making the provision of training easier as there is a user representative who understands the
system.

Other advantages are training within user areas of development staff and establishing good relations
between all computing staff and the users. Thus, not only do the development staff understand the
user’s requirements, but the user understands the project as well.

We shall look in more detail at the whole area of development staff and relations in the next section,
before moving on to examine the way in which systems are investigated.

C. THE PERSONNEL INVOLVED

The Computer Professionals
There are three key groups of specialist computer professionals involved in systems development –
systems analysts, systems designers and programmers. However, the exact demarcation lines between
analysis, design and programming are not very precise and vary from organisation to organisation. In
some companies the programmers will design detailed file and report layouts, working from an
overall specification provided by the systems designers. As the use of programming aids becomes
more widespread, and the work involved in detailed coding is therefore reduced, this division between
different kinds of computer professionals will become even more blurred. It is, though, a useful
distinction to draw in order to consider the roles involved at different stages in the development
process.

(a) The Systems Analyst

We can say that the general role of systems analysts is continually to update the information
system of an organisation. They will maintain a continual survey of information requirements
and propose changes in (or design new) systems, control the implementation of the designs and
monitor their operation.

Systems analysts are responsible for the analysis, specification and implementation of
computing or computing-related projects assigned to them. It is thus essential that the analyst
has both computer and business knowledge and experience. The job has a very wide scope, and
perhaps there is a need to divide it into two – an investigator with business training and a
designer with a background in computers.

(b) The Systems Designer

System designing can be defined as the act of analysing and documenting existing systems, and
– more particularly – the act of creating new systems meeting defined objectives.

66 System Specification

© Licensed to ABE

Systems designers can work in one of two ways:

(a) converting an existing system (usually clerical) into another (usually computerised)
system; or

(b) creating an entirely new system to meet an entirely new need.

It is obvious, therefore, that the specification of requirements stage is again very important. If
management is looking for a sophisticated, far-seeing system but does not specify this, then
what it may find itself provided with is merely the existing system mechanised or
computerised.

Essentially, the activities of system designers centre around converting what is to be done
(given by the requirement specification) into how it is to be done. They will thus have to
undertake the following tasks:

! Study the requirement specification and determine the overall system in terms of input,
output, processing and storage.

! Design, in detail, the layouts of all output documents, reports and displays to be produced
by the system and define their expected frequencies and volumes, where these are not
clearly expressed in the requirement specification.

! Determine the processing logic of the system; this will define the programs which are
required, the functions they will carry out and the order in which they will run.

! Very carefully determine all the control, validation and audit procedures needed in the
system, so that these can be incorporated into the design at the appropriate places.

! Design the input data layouts and define expected volumes, frequencies, etc.

! Specify and design the secondary memory files; this will include detailed record design,
file organisation decisions, estimated volumes, update frequencies, retention periods,
security and control procedures.

! Finalise the data specifications for input, output and storage to ensure nothing has been
overlooked.

! Design the manual procedures associated with the new system.

! Define the system test requirements which are to be used, to ensure that the system is
operating correctly.

(c) The Programmer

Programmers take the very precise design specifications and turn them into computer code
which can be understood by the computer.

It is very important that they work closely with the design and code it as written and specified.

The programmer will run the tests of the code as set down by the designer. Any problems will
be reported back to the designer for changes to be made to the design.

The programmer will also be involved in the actual implementation of the system in order to
provide any necessary last minute coding changes.

A major area of work for programmers is in systems maintenance. During the operating life of
all systems, various bugs will appear in the code. A programmer is responsible for correcting
these in consultation with the designer.

System Specification 67

© Licensed to ABE

From time to time, enhancements will be proposed for the system and again the programmer
will be closely involved in coding the design changes.

Users as Clients
Gone are the days when computing staff were referred to as “data processors” and the people who
relied on their systems were known as “users”, although you will have noticed that we continue to
refer to “users” in this course. Information Technology staff now use systems engineering techniques
to develop products for their clients. Such products may operate on the client’s own hardware or may
form part of a total facilities management service provided by the IT department or external
contractor.

A feature of business today is “total quality” and this introduces concepts such as:

! Get it right first time/zero defects.

! Internal clients (other departments in the company).

! Continual improvement.

It is now, therefore, more important than ever that the client participates fully in the design,
development, implementation and operation of the product.

We have already reviewed the structure project teams for this process. For the purposes of this study
unit, however, we shall consider the following categories of client:

! senior management

! junior management

! client staff.

Depending upon the size of system and organisation, there will be more or less overlap between these
categories. In a small business one person may perform all roles, whereas in a large organisation
many people may be involved.

(a) Senior Management

The client should be represented at a senior level by one person who is the final decision maker
on all matters relating to the project. He or she will make the “go/no go” decision at the end of
each stage of the development process but is unlikely to be involved in the day-to-day activities
of the project team.

Senior management’s responsibilities can be summarised as:

! agreeing terms of reference for the project

! defining critical success factors

! reviewing progress on a regular basis

! “signing off” each major deliverable

! agreeing budgets and schedules.

(b) Junior Management

These are the people who will have regular contact with, and may even be part of, the project
team. Working closely with the IT development staff they will need an appropriate degree of
“IT literacy” and have a good understanding of the methodologies being used. That is not to
say they should be IT experts since a good methodology will be readily understandable by most
people.

68 System Specification

© Licensed to ABE

They are likely to be managers/supervisors from the departments most affected by the
introduction of the new system and thus in a good position to define the detailed requirements.
During the operational phase of the system they will be key players in ensuring its success.

The responsibilities of junior management can be summarised as:

! Defining detailed objectives.

! Confirming “deliverables” meet client requirements.

! Making recommendations to senior management.

! Assisting in quality assurance.

! Participating in client acceptance.

! Helping to design training procedures.

! Participating in training activities.

! Assisting the implementation process.

! Using the implemented system.

(c) Client Staff

These are the people who will be using the system on a day-to-day basis. Some may be
involved in the development process as part of the project team but their main responsibilities
will be to:

! Assist the development process.

! Undertake training.

! Assist in client acceptance testing.

! Use the implemented system.

! Provide input to the post-investment appraisal.

Ensuring that the system is being designed to meet the “right” requirements is a key element of
any successful project. The client has a major responsibility in this process not only in
confirming the critical success factors but also at a more detailed level.

The development methodologies described earlier place great emphasis on diagrams on the
basis that “a picture is worth a thousand words”. The methodology can thus help the client as
well as the IT staff to confirm that the design is aimed at meeting requirements. It is very much
an individual decision on the level of detail one can expect a client to confirm, with the norm
being that such involvement is restricted to the top two or perhaps three levels of the structure.

In the case of especially important aspects of the design it may be necessary to involve the
client in much more detail and, if the client is willing to devote the appropriate level of
resources, the more one is able to do this the greater should be the eventual benefit. Such
involvement does not, of course, absolve the IT staff from responsibility. The client’s main role
is to confirm what is required; the IT developers have responsibility for confirming this is the
case and also how best to achieve those defined objectives.

The client will confirm acceptance of the following prior to commencement of the next stage of
the project cycle. Such “sign-off” may well entail the physical change of letters between the
project manager and the senior client representative:

! statement of requirements/terms of reference

System Specification 69

© Licensed to ABE

! feasibility report

! requirements definition.

Whilst IT staff involved with the project have responsibility for ensuring that the necessary
project control systems are in place, clients can assist in the review process by co-operating
fully in change control. Once an amendment has been identified and the implications for cost
and schedule are known, an appropriate client representative should confirm agreement or
otherwise to the change taking place. Junior management may “sign-off” individual changes to
certain limits, with significant variations requiring senior management approval. All changes
should eventually be submitted for formal review and approval by the senior client
representative.

It would be unusual for even the simplest of projects to reach completion without some
problems arising and when these do, all participants, both developers and clients, should seek
appropriate solutions. Whether the client has forgotten to define a particular requirement, or the
IT staff have underestimated the time for a particular task, the situation is perhaps best resolved
by discussions at an appropriate level in the project team structure.

Of course, clients cannot be expected to accept such responsibilities without some sort of help
or training. We will discuss user/client training in a later study unit, but meanwhile we can note
some specific help available, such as:

! on-line help screens

! operations manual

! help desk.

Whilst most systems currently being designed will incorporate some on-line help facility, a
more detailed procedure manual may also be needed to cover complex cases. Where
difficulties arise, the client will need access to someone to assist in resolving the problem and
one means of providing this is via a help desk which the client can telephone to discuss the
problem. Whilst the help desk may not have all the answers, it will be responsible for
“managing the problem” and ensuring that the client’s difficulty is overcome.

Computer and User Staff Relations
Computer specialists do tend to be young, well educated but not very experienced in down-to-earth
business activities. User managers tend to be older and much more experienced in the organisation as
a whole, and in the work of their own departments. Full co-operation, as we have stressed repeatedly,
is essential. But there may be particular problems arising between user staff and computer staff.

(a) Need for Skill in Human Relations

The general work of gaining good user and computing staff relationships is not always easy. It
does need skill in human relations. This skill is vital in such tasks as:

! Obtaining all relevant data for studying and defining the initial problem – often from
staff who are reluctant to define weaker points of their work.

! Training staff in work quite new to them.

! Working with future users of the system, actively involving them in the solution of
problems in design, encouraging creation of a design which incorporates the consensus
of everyone concerned.

70 System Specification

© Licensed to ABE

! “Selling” (because that is what the activity is) the chosen solution, which may not always
turn out to be the most popular one with individuals (or with the user department as a
whole).

! Gaining complete co-operation in testing.

! Accepting criticisms – whether reasonably founded or not – and overcoming problems
jointly with a wide range of personnel at different levels and with different
responsibilities.

Note also that skills in presenting information are very important as part of the “armoury” of
the analyst:

! written reports with the right approach

! oral presentations, including the help of visual aids

! demonstrations of equipment.

(b) Possible Problems

Here is a short list of some of the difficulties in computing/user staff relationships which may
arise:

! There may be no line/staff relationship to cover certain difficulties.

! The line manager may not appreciate the advantages of computers.

! Every line (and senior) manager is apprehensive of the unknown.

! Managers may believe that their jobs will be superseded by the system.

! The line manager may be used to adopting a “rule of thumb” approach, contrary to the
discipline needed by the computerised system.

! Some older managers may be happy to allow their careers to draw quietly to a close
without upheaval, whereas the computer/information technology specialist may be go-
ahead and ambitious.

It is quite wrong for all operations and decisions to be left to systems staff during the
implementation of the system, after the agreement as to the specifications has been reached.
The IT department constitutes a staff group which exists to gather and analyse information, and
to make recommendations concerning the line unit’s information system. It is the line
department – the user – which has to make the decisions. Often, a user department will
virtually abdicate its responsibility for design and implementation of a system when its current
manual system is badly controlled and weak. This means that what appears to be a systems
problem is only a symptom of the real problem – bad management in the user department. It is
not unknown for users in these circumstances to try to transfer the blame to the IT department.

A user department, too, may not be properly staffed and may be unable to meet its obligations
to the system. To help in starting the system, the computing department may then offer more
help than would normally be wise. However, in this case, it should be made known clearly that
the assistance in no way relieves the user department of responsibility.

(a) Role of Communication

Effective communication is vital to the operation of a systems department. Communication is
vital in establishing formal aims and formal policies, and also in informal resolution of
problems.

System Specification 71

© Licensed to ABE

Personalities, it is true, tend to assume greater importance in informal problem-solving; the
computing manager can frequently gain a great deal from the presentation of an unbiased and
carefully prepared analysis of the situation, offering the advantages and disadvantages of the
alternatives, and by assisting user staff to arrive at a reasonable solution.

We have said that communication is concerned with aspects of selling. Computing managers
often have to sell their point of view to their line managers, who may well have a narrow
perspective, as it is their own department with which they are primarily concerned. The
computing department cannot have such a narrow viewpoint since its work reaches across all
departmental boundaries. The computing manager is obliged to look at what is best for the
organisation.

Co-operation and communication are also allied. When communication is good, then
computing and user staff work harmoniously together. The representatives of the user
department should be well known, and be able to devote enough time to successful systems
application and development.

D. SYSTEMS INVESTIGATION
The actual project development begins with a very full investigation by the systems analyst.

To establish requirements and constraints, the systems analyst must elicit all the necessary facts from
potential users and all other interested parties.

The feasibility study, the production of a specification of requirements and the design of the system,
all require a considerable amount of investigation. The results of the investigation must be fully
recorded. We will now look at some of the methods of fact finding.

The Scope of Fact Finding
“Investigation” is concerned with the review of what is known now, the discovery of the previously
unknown, and the structuring of experiments to find out facts about known areas and unknown ones.

Merely finding out about what is known is insufficient. Systems investigation should include such
activities as model building, “brainstorming” and simulation, as well as experimentation. Techniques,
therefore, are often regarded as going beyond the fairly straightforward concepts of the interview, the
questionnaire, observation and document analysis.

(a) Problems

The most essential feature of any fact-finding technique is that the facts so found must be
correct. A number of factors can distort the truth of facts discovered:

! The facts may be distorted, intentionally but more likely unintentionally, by the person
presenting the information.

! The communication containing the facts must be interpreted by the person receiving it
and the interpretation may distort the truth.

! The written word creates potential difficulties when the writer and readers do not know
each other.

! Observation of the actions of people does not always reveal the true facts, as again it is
subject to the interpretation of the observer; also, the person observed can disguise what
is actually being done – how else does the conjurer operate?

72 System Specification

© Licensed to ABE

These problems can be overcome provided systems analysts take steps to ensure that all facts
are thoroughly checked. They must also be aware of the distortion they themselves may
impose.

(b) Sources of Information

Each project may be concerned with different sources of information – some may rely on
internal, others on external data.

As far as the current system is concerned, users are the most important source. It is they who
are aware of the significant and trivial facts. However, a worker within the system may easily
have been misinformed or have misunderstood the duties of a colleague; conflicting
information about a system is not at all uncommon. The supervisor may not know all the
procedures undertaken by staff; duplication of effort is common.

Most investigations start by looking at the current system; documentation for this will vary
greatly in quality. Occasionally, it is found to be correct to the smallest detail, or, alternatively,
it may be almost non-existent.

(c) What Facts are Required?

If it were possible to list the facts that should be obtained during a systems investigation, then a
systems analyst’s job would be easy. This cannot be done because no two systems are alike, but
it is possible to give guidelines that pertain to most commercial applications. Systems analysts
must use their common sense when following these guidelines.

! The organisation’s range

This includes not only the products or services supplied, but also the number of people
employed, the number of suppliers’ and customers’ accounts serviced, etc. – in other
words, any items relevant to the area under investigation.

! Details of items in the range

The quantities, values, descriptions and fluctuations are required. In addition, the type of
code numbers and their range are very important.

! Volumes

Once the type of data has been established, the volumes, receipt and despatch of
documents, peaks and troughs in data flow, etc. must be recorded.

! Calculations

It is necessary to record precisely the calculations performed, particularly with regard to
fractions, rounding-off, and the degree of accuracy required.

! Movement

Documents will move between departments in the organisation and also in from, and out
to, other organisations. These movements will probably be shown diagrammatically.

! Exceptions

It is relatively easy to record what the usual procedures are. Because the exceptions
occur infrequently and unpredictably, it may be difficult to identify them. Most of the
problems that occur after the computer system has been implemented result from the
exceptions that were not recorded during the systems investigation.

System Specification 73

© Licensed to ABE

! Staff

An organisation chart will be helpful, and details of the number of different grades of
staff and a brief description of what they do should be obtained.

In this context it is important to ensure that the data gathered reflects the actual situation
in force. In other words, care needs to be exercised to ensure that the organisation chart
and supporting documentation have been accurately updated upon each change in
organisational structure.

(d) How are These Facts Gathered?

! Asking

This is the holding of discussions, whether formal or informal, between the investigator
and the staff who operate the system. Interviewing may be one method here, although
this suggests a more formal and stereotyped approach. Often, many useful ideas and
suggestions can be obtained by an informal chat.

Before systems analysts commence this work, they should arrange, via the department
head, a convenient time to approach staff and have at least an outline (or, better still, a
list) of the facts required.

It may be impracticable to visit personally all the staff involved, because they may be at
branches scattered throughout the country or there may be too many of them. If the facts
required are of a relatively simple nature, a questionnaire could be drawn up and
despatched.

! Observation

Systems analysts will spend a great deal of time in the department being investigated;
they will be asking questions, examining records, etc. During this time, they will be in a
position to observe what is happening. For example, they may notice:

(i) excessive staff movement

(ii) some very busy clerks and others with much spare time

(iii) frequency of file usage

(iv) communication problems both within the department and outside.

! Reading

There may have been previous investigations of the department at present under scrutiny.

Systems analysts should read these records to help them understand the current system.
However, too great a reliance should not be placed on these documents, particularly if
they were prepared some time ago.

Other documents, such as policy statements, standing instructions, memoranda and
letters pertaining to the investigation should also be read.

! Measuring and counting

The number of items, documents, transactions, people and time taken for individual
processes should be measured, either to confirm facts already recorded or to establish the
current position. Sampling (see later) may be used, but care should be taken to avoid
bias. The frequency of different activities and events should also be recorded.

74 System Specification

© Licensed to ABE

! The organisational structure

The organisational chart of the user department will often highlight features useful to the
investigation and individual job descriptions will identify an individual’s area of
responsibility.

(e) Relevance and Verification

You may think that it is obvious that only relevant facts should be gathered. However, it is not
always easy to see what is relevant and what must be discarded. It is easy to gather large
volumes of facts, but not so easy to glean the important ones. Systems analysts should
constantly refer to their terms of reference or other documents setting down the areas to be
investigated.

Ideally, every single fact obtained should be checked. Practically, this is not possible, and a
degree of tact and diplomacy is often required where facts are being questioned.

Analysts can find themselves in a consultative role if user staff are able to carry out the fact
finding themselves. Provided that the facts are being obtained correctly, this method is to be
encouraged. It involves the user staff right from the start, and enables them to look at their
work objectively. They will need encouragement to suggest changes, but they will most likely
accept changes that they have initiated.

Interviewing
Personal interviewing is the most satisfactory method of obtaining information. It will yield the best
results provided it is carried out properly. The interviewers’ approach, whilst being disciplined, can
be as flexible as the occasion demands, and they can pursue any lead provided by the respondent to
obtain the maximum amount of information. A good interviewer will achieve a balance between
discipline and flexibility in order to draw maximum benefit from the interview.

This method is often the only means of obtaining opinions from senior people, particularly where the
subject under discussion is highly technical. Such information is usually qualitative. Personal
interviews may also be the best means of obtaining a large amount of quantitative information from
respondents. Only a personal visit allows the researcher to see written material which the respondent
may otherwise forget or ignore.

Personal interviews are, however, time-consuming and expensive. Their use may, therefore, be
limited to a few key interviews, if the remaining information can be obtained in other ways.

(a) Advantages

The main advantages of interviewing are:

! The written word and its associated problems are eliminated.

! An interview is a dialogue, which enables both parties to ensure that the other is not
misinterpreting what is being said; immediate correction is possible.

! Important side issues raised during the discussion can be followed through immediately
and placed in context.

! Since analysts are face to face with the other party, they can use appropriate language for
the discussion (this, of course, may demand considerable ability in the use of language
by the analyst).

System Specification 75

© Licensed to ABE

(b) Disadvantages

The main disadvantages of interviewing are:

! It may be necessary to interview a number of people in order to eliminate any distortions
caused by each single interviewee; this can be very time-consuming for the analyst.

! During the interview, interviewees will be unable to carry out their normal tasks.

! The technique relies heavily upon the skill of the analyst in creating a suitable
environment to put the interviewee at ease and to elicit the necessary facts. For example,
if the interviewees feel that their livelihood is at stake, they may be unwilling to co-
operate or may deliberately give misleading information in order to protect themselves.

! Difficult situations can arise when a particular operation is not carried out at the “office
floor” level in the way managers think it is being carried out; the analyst’s report must
contain the true facts of the situation, but the managers may, as a result, feel it is
attacking their position and competence.

(c) Conducting an Interview

The analyst must be aware of the potential dangers of the technique, and the following points
should always be borne in mind:

! The analyst must carefully consider what facts are to be obtained from a particular
interview before the interview takes place. An appointment should be made, to ensure
that the interviewee is free to discuss the matters in hand, and interviewees should be
given notice of the matters to be discussed in order that they may collect any necessary
material together.

! During the interview itself, it is important that the analyst uses the interviewee’s own
language. This will help to reduce misunderstandings.

! The purpose of the interview is to elicit all the facts. To do this effectively, discussion
must take place. Analysts must avoid asking questions which merely require a “Yes” or
“No” reply. However, they must also be careful not to ask leading questions.

! The analysts’ task at the interview is to obtain information. They must not express
opinions.

! Care must be taken to distinguish fact from opinion. Although opinions are important,
they must act only as a guide which the analyst can follow to find further facts.

! After the conclusion of the interview, analysts should prepare a written report and cross-
check the facts given.

(d) Summary of Procedure

We can now draw up four rules of correct procedure for any interview:

! Identify the correct respondent – if the respondent cannot provide the information, the
interviewer should not continue the interview, but try to contact someone else who can.

! Arrange the interview – appointments for personal interviews should be made in
advance.

! Plan the interview – the success of the interview will be proportional to the time spent on
preparation. A questionnaire or list of questions should be drawn up. Each interviewer
must be conversant with the subject under investigation, and be technically briefed from

76 System Specification

© Licensed to ABE

information gathered by desk research. As far as possible, the interviewer should
anticipate problems and reactions, and be prepared to handle them.

! Record the interview – when the results have been written up, the interviewer should
review them, note any problems or mistakes, and record any important points that should
be raised in subsequent interviews.

Observation
A second method of fact finding available to the analyst is simple observation. Often, many more
facts can be obtained by watching a particular operation than by mere interviewing alone. But
observation must be accompanied by other methods, and analysts must know what they are looking
for, prior to the period of observation.

The technique can obviously be applied only when there is something to observe. Thus, it can be
used only to investigate existing systems, and then only to observe the actual working of the system.
It cannot be used to find out abstract information, such as the objectives or constraints. When
investigating existing systems, observations can act as a very useful cross-check on facts gained by
other techniques.

A major problem with observation is that an analyst can never be sure that the operation he or she is
watching is not affected by his or her own presence. The person being observed will be conscious of
the analyst’s presence and may work more carefully or quickly or slowly, depending upon his or her
attitude to the purpose of the observations.

Questionnaires
(a) Written Questionnaires

Sending written questions to people may appear as an attractive technique, in that it saves the
time needed for interviewing. However, it is fraught with major problems.

! It is extremely difficult to phrase questions which are unambiguous and make it clear
exactly what information is sought.

For example, a questionnaire sent to departments in a college concerning their potential
use of a computer asked: “Please list the courses which will use a computer in the
coming year”. One department interpreted this as any course where a student used a
computer, even if that use was merely a brief demonstration by a lecturer of a computer
terminal. Another department interpreted it as only those courses in which students were
taught to write programs. The original intention of the question was to find out how
many courses used the computer as a teaching aid to students, whether the course was
computer studies, accountancy, English literature, or whatever.

! The replies to questions are subject to misinterpretation by the analyst, for similar
reasons.

! The analyst can never be sure that the questionnaire was completed seriously by the
recipient. For example, has the recipient really checked the facts written, or merely
guessed?

! Many recipients of questionnaires simply throw them in their waste-paper bins. The
results may thus not be a valid sample of certain opinions or facts.

Expert advice on framing questionnaires should be sought by the analyst, and possibly a junior
member of the analyst’s team should help the recipients complete them. These two actions can
alleviate some of the problems.

System Specification 77

© Licensed to ABE

Questionnaires are a last resort method, to be used only when other methods are too time-
consuming, uneconomic or not practicable for other reasons. They are useful when a large
number of responses is sought.

(b) Use of Questionnaires in an Interview

A questionnaire may be required when collecting information from respondents by personal
interview, for the following reasons:

! To ensure consistency of approach

Use of a standard questionnaire will ensure that the same questions are asked in the same
way throughout an assignment. This is particularly important when more than one
interviewer is involved. The questionnaire need not be rigidly structured, but it should
always provide a guide for the interviewer. This will enable a standardised approach to
each interview to be adopted.

! To achieve a logical flow of questions

It is often important to ask questions in a particular sequence in order to obtain accurate
results. Some questions should be asked only in the middle or at the end of an interview
to avoid influencing a respondent’s replies to earlier questions. The interviewer often
does not want to give too much information at the beginning of an interview, as this
would probably bias the respondent’s opinion.

! To avoid omissions

It is essential to ask all the questions for which answers are required at every interview.
An interviewer can easily omit important questions during an interview if he or she is not
working in a systematic way. It may be difficult and time-consuming to go back to the
respondent once the interview has been terminated. A questionnaire serves as a check-
list of key questions, and thus avoids omissions.

! To ensure data is collected in a form suitable for tabulation

Collecting information is not an end in itself. It must be processed, analysed and
presented in a useful form. The discipline involved in designing a questionnaire with a
view to tabulating the answers, ensures a logical flow of the questions that it is essential
to ask, and eliminates the unnecessary ones.

(c) Rules for Design

Whether the questionnaire is to be used at an interview or sent out to respondents to be
completed and returned by them, there are five basic rules to be observed when designing it:

! Avoid bias

Questions must be phrased to avoid influencing the respondent’s reply.

! Test out questions

The ideal way to test the efficiency of the questionnaire is to get a few pilot ones
completed to check if respondents can provide the answers required. These will
highlight difficulties and produce at least some of the possible “odd” answers, so that the
questionnaire can be modified beforehand. (You must remember that, however well a
questionnaire is designed, someone will give unexpected answers.)

78 System Specification

© Licensed to ABE

! Design for subsequent tabulation

This is fairly straightforward when compiling structured questionnaires, but not so easy
for those requiring extensive use of open-ended questions.

When possible, items should be pre-coded to reduce the time spent on tabulation. It will
be necessary to meet special layout requirements if the analysis and tabulation is to be
done by computer.

! Be simple, concise and logical

Questionnaires and questions should be as short as possible. Jargon terms (which may
not be understood by all respondents) should not be used as they may be misinterpreted.
The questionnaire should follow a logical pattern and should be divided into sections,
each dealing with one aspect of the investigation. If statistical information is especially
important, it may be necessary to ask for it during the middle stage of an interview when
the respondent is most co-operative.

! Use the correct terms

It is essential to use the correct technical terms which can be readily understood by all
respondents. Data should be collected in units recognised by the industry concerned.

Existing Written Material
The analyst must not ignore any existing written material associated with the area under investigation.
Such documentation may include:

! Organisation charts.

! Company manuals describing the terms of reference for departments.

! Operational procedure manuals for existing systems.

! Reports and specifications of previous investigations of the area being looked at.

! Reports and specifications of systems which are related to (or associated with) the system to be
developed.

! Any statistical information from which the analyst can determine (or predict) the volume of
data which may be processed by the new system.

! Any policy or planning documents which may indicate future changes that may affect the
operation and information output of the system.

The documents listed above will suffer from all the problems associated with the written word. As
with observation, written material is useful as a cross-check for interviewing. Discrepancies must be
investigated carefully. Remember, even if the written material was accurate at the time of writing, it
may have become outdated. All written material must be cross-checked before using its facts in any
report or specification.

Sampling
Analysts will need to obtain some quantitative information about the systems they are studying. They
need to know the amount of time spent on particular aspects of the work:

! How many invoices are processed each day?

! What is the average number of items per invoice?

! And the maximum number?

System Specification 79

© Licensed to ABE

It is impossible for analysts to sit for hours on end, watching and recording every movement of the
staff. Neither do they have the time to examine many thousands of invoices in an attempt to get an
accurate count of the items of interest.

In each case, analysts will want to take a few figures, a sample, and use these figures as a basis for
calculation.

The fundamental problem is, how many figures is “a few”, and how should the analyst obtain them?
How reliable are figures based on samples?

Using the theory of probability and the mathematics associated with it, it is possible to take a sample
and, from the characteristics, draw conclusions about the characteristics of the system from which we
have taken it. Since the theoretical knowledge required is fairly extensive, we cannot describe it here,
and if sampling is to be used to any extent, the analyst should take advice from a statistician.
However, we will briefly describe the ideas involved in sampling so that you are aware of the
possibilities of using these techniques in an investigation.

Sampling is a method for reducing the amount of observation which analysts have to do, as well as
giving them a “feel” for the numerical information which can be obtained from records. The main
lesson to learn is that averages are not a sound basis upon which to work.

When selecting a sample from a larger population, there are two main points to note:

! The number of items in the sample must be large enough to avoid any abnormal items having
an undue effect on the average of the sample.

! Every item in the population must have the same chance as any other of being in the selected
sample.

However much care is taken in selecting the sampling method, there will still be some sampling error
– that is, the difference between the estimate of a value obtained from the sample and the actual value.

E. THE FEASIBILITY OR INITIAL STUDY
As a result of gathering and analysing facts about the existing system, the analyst will draw up a
feasibility study. This is an extremely important document as it is used to justify (or not) expenditure
on the development of a new system.

The proposals for new systems generally come from user departments. They draw up a short
document, the user requirements, setting out what is wanted. This is submitted to the steering group,
who will pass it to a small team for initial investigation.

The initial selection will have been based on relatively scant information, but the people carrying out
the feasibility study need terms of reference, which will be drawn up by management and based on
the user requirement.

Aims
The aims of the study are to investigate the proposed system and produce a feasibility report which
will contain the results of the study and indicate possible methods of achieving the requirements. The
alternatives will be accompanied by cost/benefit comparisons, to assist the steering committee in
deciding which solution to adopt.

A very detailed investigation is usually unnecessary at this stage, as only broad estimates are required.
This also keeps the cost of the investigation to a minimum.

80 System Specification

© Licensed to ABE

There are three aspects to the question of feasibility. We have already discussed these from the
perspective of influence on the proposed system:

(a) Technical

Is the current state of hardware and software technology capable of supporting the idea of the
system?

(b) Personnel

Is the expertise of the systems development section sufficiently advanced to tackle (and
successfully achieve) the production of the system? Such a question must also be asked of an
outside agency if it is to produce the system. If the answer is “No”, can the expertise be
obtained by hiring new staff or training existing staff? Is the cost of this justifiable?

Many modern systems are run by users themselves who may, or may not, have the support of
an IT department. With a small business system, it may be necessary to go back to the supplier
if support is required. In both cases, it is necessary to consider the personnel within the user
departments when deciding on the feasibility of a particular approach.

(c) Financial

Even if the system does provide an acceptable return on investment, is the capital available for
outlay on the project?

Determining the Main Requirements of the System
The assignment brief will have specified in general terms the requirements of the proposed system.
However, even at this preliminary stage, detailed requirements must be determined, otherwise the
analyst will be unable to envisage the total scope of the problem and thereby suggest possible
solutions.

Initially, therefore, the team will conduct a survey of all interested parties to find out exactly what will
be required of the system.

(a) Main Characteristics

These will be defined in terms of the output information required. At this preliminary stage, the
detailed layouts and methods of presentation will not be needed, but the team will need to find
out:

! Volumes of output required.

! Frequencies of the output.

! Geographical location of the receivers of the information.

! Response times to requests for information if on-demand output is required.

When the outputs have been determined, the team will be able to ascertain – again in general
terms – the volume, frequency, etc. of input data and the volume of stored data necessary to
produce the output.

(b) Main Constraints

Not only must the requirements of the system be known, but also any constraints on its
operation. We have indicated one of these above – that of geographical location. Others might
include:

! Limitations caused by associated existing systems.

System Specification 81

© Licensed to ABE

! Financial and staffing considerations.

! Statutory constraints.

! Auditing requirements.

! IT policies governing the inclusion of ultra-new technology (many firms will only use
tried and tested technologies – many “fingers have been burnt” by pioneering
organisations).

! Current computer equipment.

! Environmental constraints.

! Time, especially when information must be available at a particular time (as in a payroll
system).

! Performance in terms of throughput, response times with a given number of users, etc.

! Accuracy of output information.

! Control and security procedures.

(c) Input Data

This section will describe all the input data. It will indicate the type of data, its quantity and
frequency. If relevant, it will define the structure and layout of the data when the design of
input data documents is outside the control of the systems designer. The medium for input may
be a specific requirement.

(d) Output Information

All the output to be produced by the system will be specified in this section. Unless there is a
specific requirement, it may be left to the systems designer to prepare the actual layouts and
presentation of the information. However, this section will specify the elements of information
required for each output, the frequency and volume of output, together with the medium on
which the output is to be presented.

(e) Validation Requirements

The data input to any automatic data processing system must be correct. It is important that the
validation procedures to be adopted in the new system are specified fully so that the designer
can incorporate them in the design.

This section will specify both the validation procedures to be adopted, and the ranges of values
and other associated information for every data element used by the system. For example, a
name must be given a maximum length, a code number, its check digit mechanism and the
range of values it can adopt.

In addition, if the system is to be on-line with direct data entry from keyboards, then the
methods of indicating errors and the action to be taken by the system should be specified,
especially if the user is to be allowed to make immediate corrections to any data erroneously
input.

(f) File Requirements

Unless the system uses files created by other systems, it is usual to leave the file requirements
to the system designer. If the system does use existing files, then their details will be included
in this section.

82 System Specification

© Licensed to ABE

This is a fundamentally important point with existing files increasingly being used to promote
integration throughout systems methodology.

(g) Enhancements

It is quite usual for a system to be specified with the intention of enhancing its facilities at a
later date, or for there to be a future system envisaged which will use the output or files of the
specified system.

The system designer, in studying this section of the requirement specification, will be able to
allow for such enhancements and facilitate their inclusion in the future.

Considering Alternatives
When all the relevant facts have been collected, differing approaches to solving the problem can be
considered. The team should investigate solutions which have been found for systems with similar
requirements both within and outside the organisation.

Cost/Benefit Analysis
This is the most important aspect of the feasibility study as its results will be the main information
from which future decisions concerning the viability of the project will be determined.

Cost/benefit analysis is frequently used in management accountancy in order to compare solutions to
a given problem and, by using value judgements, to assess savings and losses made by various parts
of the system. Essentially, such an analysis attempts to place a monetary value on all aspects of a
system. Some aspects will create a cost (e.g. the purchase of computer equipment) and others will
create income or reduce cost (e.g. an increase in the number of transactions handled or the scrapping
of existing computing machinery).

The method is not as straightforward as it at first appears since some items – usually benefits – are
greatly influenced by subjective evaluation. For example, what is the benefit of providing a better
service to customers? How much will sales increase if the sales director has more information on
which to base marketing decisions?

When each aspect of each alternative has been given a monetary value, then their costs and benefits
can be compared. We can therefore identify three main parts to such an analysis:

(a) Determine the costs

These may be divided into four parts:

! Computing costs – which start with the salaries and associated overheads for the
systems analysts as they perform the feasibility study and investigate the requirements of
the new system and then go on to develop and implement the system. This work may be
carried out by people from an outside company, in which case the costs will be easier to
itemise. Also under this heading comes the cost of any new computer hardware and any
“bought-in” software. These can be regarded as capital costs of the new system.

! User department costs incurred during the investigation and implementation stages,
which include wasted productive time as a result of the investigation disturbing the
normal flow of business, education and training costs and “phasing in” costs when, for
example, parallel running (see later) may make some overtime necessary. These again
can be regarded as capital costs.

! Operational costs, which include salaries and overheads of the people running the
system (who may be IT or user staff or both), consumable materials such as special

System Specification 83

© Licensed to ABE

stationery and disks, communication costs (for example, telephone, if the system has
some remote users) and hardware and software maintenance.

! Other costs – all systems must be monitored throughout their life to ensure that they
continue to fulfil the original requirements, or to check that the requirements still apply.
The system may thus require modification if it is found not to be achieving the best
results. This evaluation and modification is often termed “system maintenance” and can
involve major expense, especially if the design is poor and ease of maintenance was not
allowed for in the system.

(b) Determine the benefits

These may be assessed under three headings:

! Direct savings, which can be defined as a definite reduction in cost as a result of
changing from an old to a new system. These are fairly easy to identify and attach a
monetary value to, and because of this they are sometimes used as the sole measure of
benefit. However, this is incorrect, as the other two groups of benefits often give rise to
much greater returns on the investment in the new system.

! Measurable benefits, which can be defined as “a monetary or financial return which
accrues to the organisation as a result of the operation of the new system”.

These are by far the most important benefits to be balanced against the costs of the new
system. They are often difficult to assess, yet effort should be expended to assess their
monetary value. One example is a purchase ordering system which may produce great
benefits by ensuring that the best possible terms for bulk purchase discounts and early
payment discounts are obtained.

! Intangible benefits, which are those to which no monetary value can be attached. A new
system will usually provide improved information. For example, an on-line order
processing system will expedite the despatch of goods to customers. The organisation
will thus provide a better service than its competitors, and this should mean higher sales,
but the level will be difficult to assess.

(c) Perform a comparison to determine the “best” approach

The most important comparison is between the measured costs and benefits of the alternative
systems. One might assume that this is a simple task of adding all the costs, subtracting this
from the total of the benefits, and the system showing the largest net benefit is the one to
choose.

However, factors such as return on investment, inflation and risk have to be taken into account.

The Report
We can now list the contents of a typical feasibility report produced by the team of systems analysts
on completion of their investigation. These are as follows:

! Restatement of the terms of reference.

! Summary of the investigation (often the detailed findings are attached as an appendix to the
report).

! Identification of the requirements and constraints.

! Descriptions of the solutions.

! Detailed costings and benefits of each solution.

84 System Specification

© Licensed to ABE

! Summary comparisons.

! Recommendations.

This report will be sent to that part of management which requested it; it must enable them to
determine the next course of action. Assuming that one of the proposed approaches is selected, then
the next stage of the project will be authorised.

F. USING CONSULTANTS
In certain cases, an organisation may decide to hire a consultant or engage a consultancy firm which
has expertise in the required area. This may be because the organisation lacks skill and knowledge of
the techniques it wishes to employ, or because there are insufficient resources within the organisation
to carry out the required work.

Consultancy firms with the requisite knowledge can also advise on the setting of standards, the
adequacy of control procedures, assessing the performance of existing systems, etc.

Consultants should be able to formulate and evaluate alternative strategies and, if necessary, help in
the implementation of the selected solution. In order to carry out the work successfully, consultants
need the wholehearted support of everyone in the organisation concerned with the project.

Preparation is important. It is not enough simply to hire a consultancy and ask them to get on with
the job. As with all such situations, the user organisation will need to think through in some detail
what it is they want. They will need to formulate limitations of what should be done, both in the
extent of the proposed system and its cost. It will also be necessary to specify any existing constraints
as for any project. Typically, these may be existing hardware and software systems, time-scales,
existing auditing procedures and environmental considerations.

In addition, the progress of the work should be carefully monitored in case unexpected snags occur. A
senior person within the organisation should be appointed as the consultant’s main contact so that
there is a clear way of reporting progress, obtaining information and sorting out any difficulties which
may arise.

If consultants are used by a company with an existing computer manager, it is important that this
manager should participate in the policy decisions relating to this arrangement. If this does not
happen, the manager may find that he or she is left with unrealistic objectives established by the
consultant or, at least, objectives with which he or she has not been associated.

Problems often arise when using consultancies. These are, of course, generally due to lack of prior
preparation by the contracting organisation, although there are other possible reasons:

! Lack of experience, possibly on both sides as we can never assume the contractor is fully
experienced in our requirement area.

! Over-optimism as everyone concerned wants to complete the job as soon as possible and, as
with most projects, more time than that allocated is required. This can cause friction with the
consultancy.

! Communication problems occur even when a senior member of staff is assigned as main
contact with the consultancy. That member of staff may frequently be unavailable. This will
cause delay as a minimum effect and maybe even misunderstandings over the requirements.

It will always be necessary to arrange for frequent expert reviews of progress and proposals to date.
The computer manager should always be involved here, as well as the senior manager from the user

System Specification 85

© Licensed to ABE

department requiring the system. Such reviews should compare progress with the project plan, ensure
adequate resources continue to be available and monitor the costs to date.

86 System Specification

© Licensed to ABE

87

© Licensed to ABE

Study Unit 5

System Design

Contents Page

A. Logical and Physical Design 88
Points to Note 89

B. The Design Stage 89
Importance of Requirement Specification 89
Influences on Design 90
The Design Process 91

C. System Design Specification 92

D. Design Considerations 93
Input Design 93
Output Design 94
Processing Considerations 95
Storage Considerations 95
Maintenance and Expansion 95
Design Constraints 96

E. Human-Computer Interface 96
Command-driven Interfaces 96
Menu-driven Interfaces 97
Graphical User Interfaces (GUI) 97
Voice 97
Screen Design in Practice 97

88 System Design

© Licensed to ABE

A. LOGICAL AND PHYSICAL DESIGN

We can differentiate between logical system design and physical system design. The design of the
logical system will take as its starting-point an outline model of user requirements. Assuming that this
is in the form of a data flow diagram, the process of logical design involves successive refinement of
the model until it meets all of the user requirements. The refinement normally starts with the outputs
of the system and works back via files (or stored data) to inputs and procedures, taking into account
the objectives and constraints that the system has to accommodate.

When the logical system has been defined to the satisfaction of the user, work can begin on detailed
physical system design, i.e. detailed specification of the way the system will operate in a specific
environment, using specific equipment and specific people.

There are lots of tasks involved in physical system design, covering all aspects of computer-based
systems. For the sake of simplicity we will break them down into a series of separate tasks, though, in
practice, they would not be carried out separately or in isolation.

The tasks we can identify are output design, input design, file design, program design, user procedure
design, forms and dialogue design, and security and controls. Any approach to computer system
design will involve all of these aspects in an integrated way. The design of files, for example, will be
tied in with the design of input; input must closely relate to forms and dialogues; all data (input, file
and output) has to be considered in relation to programs, and programs in relation to user procedures.
In other words, they all relate to one another and cannot be carried out without these relationships
being optimised.

The relationship between the logical and physical system design is shown in Figure 5.1.

System Design 89

© Licensed to ABE

SYSTEM
INVESTIGATION

LOGICAL SYSTEM
DESIGN

SYSTEM
CONSTRAINTS AND

OBJECTIVES

Inputs & outputs,
data storage, procedures

(user requirements)

AVAILABLE
RESOURCES FOR

SYSTEM

PHYSICAL SYSTEM
DESIGN

PHYSICAL DATA
Database

Files & data elements
Inputs and outputs

Forms
Codes

PHYSICAL
PROCEDURES

Clerical
Security
Control

Programs

Figure 5.1: System investigation, logical design and physical design

Points to Note
In logical system definition the analyst must take the following into account:

(a) The design objectives must be completely specified.

(b) Data requiring storage must be structured.

(c) Conversion of the analysis results into inputs to and outputs from the system is required.

(d) The kind of processing needed to meet user requirements is considered at this stage.

B. THE DESIGN STAGE

We can now return to the design stage itself which will personify and embrace the points made above.

Importance of Requirement Specification
When the requirement specification is complete, it must be approved by management. The document
is very important, as the new system will be judged on the basis of it.

90 System Design

© Licensed to ABE

Before the actual design and implementation of a system, the requirement specification must be
agreed with the potential user as a full statement of facilities needed. When a system meets the
requirements stated, then the designer can consider that the development has been concluded
successfully.

Perhaps the most significant reason for the dissatisfaction many managers have with computer
systems is the lack of importance placed on a good requirement specification. It clarifies the purpose
of the new system – when one is not produced, or little attention is paid to it, nobody – user, designer,
manager or clerk – will really know the purpose for which the system was intended. It also has a
major advantage for the designers in that they can design a system without interference. (Without an
agreed requirement specification, the user will often not accept that what is produced is what was
asked for, and will keep thinking of “improvements” to the system.)

The design stage of development should thus not be started until a formal agreement is reached on the
requirement specification. Ideally, the user department management and the commissioning
management should sign a written statement of agreement.

When a system has been specified, the possibility of using ready-made packages should always be
investigated, since this will save a large amount of development work. If packages which may be
suitable are identified, the facilities they offer will need to be compared with those required by the
users. Sometimes it may be more cost-effective for users to get 90% of what they said they required if
this can be obtained from a proven package, rather than waiting for a “100%” system to be developed.

Influences on Design
Whether packages are used or a new system developed from scratch, inevitably the desired aims could
probably be achieved in several different ways, and so the final design is almost bound to be a
compromise based on a whole set of influences: cost, accuracy, control, security, availability,
reliability, and so on. The design must be acceptable to programmers and users.

(a) Cost

This will involve:

! Development cost, including the current design stage. (The feasibility and analysis
stages are separately funded.)

! Operations cost, including data preparation, output handling supplies and maintenance.

(b) Accuracy

This means appropriate accuracy, resulting from a compromise between error avoidance and the
cost of this.

(c) Control

The design must permit management control over activities, one facility of this type being the
provision of control data in the form of exception reporting.

(d) Security

This is a fairly complicated aspect of design, largely concerning data security and
confidentiality. We shall be referring to this later.

 (e) Availability

This refers to availability of the resources which will comprise the operational system (staff,
stationery, software, space, etc.). This is the responsibility of the analyst in the sense that he or
she must be sure that, at the time of implementation, these are available.

System Design 91

© Licensed to ABE

(f) Reliability

The design has to be reliable, that is sufficiently strong in itself to withstand operational
problems. In addition, there must be alternative computing facilities as “back-up” in the case of
breakdown, and sufficient staff to deal with peaking of workload.

The Design Process
System design is essentially a creative process, involving much conceptual thinking. Almost anyone
with a basic knowledge of computing should be able to design a computer system which would
produce the right results. However, there is a much more difficult part – namely to design a system
which can be implemented and controlled in practice, and which will not only produce the right
results but will additionally produce them to time and (especially) do so economically. It is in these
latter areas that the expert knowledge of the designer manifests itself, and it is these aspects which
must be readily discernible in the detail of the system specification.

We now take a quick look at the way in which we might approach the design process.

(a) Start with the Results

One approach to design is to consider the output requirement first; this is the main vehicle for
achieving the objectives. We look at the output from the point of view of content (the
information to be produced) and of format (the way in which this information is to be
presented).

(a) Organise the Data

We need to input the variable and fixed information for each procedure we want to carry out.
Derived information will be produced by the computer and constant information such as report
headings, etc. can be built into the computer program.

(c) Design the logical system

This will be carried out by taking into account a series of considerations as we consider below.

(d) Design the physical system

The logical design will be shown to the user for approval or suggestions. When approval is
obtained, the physical design is prepared by the designer. It will consist of:

! Screen presentations;

! Input understandings;

! Output understanding;

! Processing descriptions.

The physical design implements the logical design in the technical specifications of the
proposed system so as to optimise the use of hardware and software.

All the service requirements must be achieved, both technical and administrative.

92 System Design

© Licensed to ABE

C. SYSTEM DESIGN SPECIFICATION

The designer receives the requirements specification and produces the systems design specification.

The requirement specification describes what is required from the system. The next stage is to decide
exactly how the system will be developed and implemented to meet these requirements.

A typical system design specification will contain an introduction, briefly highlighting the main
system requirements, and the following sections.

(a) General Overview

This will define, in not too much detail, the facilities which the system provides. It will contain
a system diagram, and will give the environment and basic operations philosophy of the system
and describe its interface with existing systems. Facilities will be presented in terms of the
input, output and storage provisions of the system.

(b) System Operation

Systems should serve distinct business processes. Thus there should be individual systems for
each business process and sub-systems for each activity within the business process.

The detailed specification of the logic of the system will be given. Essentially, this will show
how the input data is converted into output information and when the files are updated. Each
program will be shown and placed in relation to the other programs.

Exact details of volumes of data and frequencies of processing will be described, together with
any special requirements for recovery and restart in the event of system failure.

(c) Hardware and Software Requirements

This section will define in detail the hardware and systems software which must be available to
enable the new applications system to operate successfully. In particular, it will specify any
new hardware or systems software which must be obtained. If the new system is to operate
within an existing computer system, there may be little in this section, unless it requires
additional hardware or software.

(d) Output Layouts

This section will contain detailed plans of the layouts of every output produced by the system.

(e) Input Layouts

This section will contain detailed plans of the layouts of all input to the system. This will also
include layouts for all documents to be used to collect data.

(f) Data Storage Specifications

Exact plans for every record to be used by the system will be specified, and the structure of the
files or database will be given.

(g) Detailed Specifications

This section of the design specification will be divided into a number of subsections. For each
program or module the following will be given:

! A general functional description specifying the facilities to be provided by the program;

! Details of input;

System Design 93

© Licensed to ABE

! Details of output;

! A detailed specification of any particular processing required, e.g. actions in the event of
errors validation procedures, any formulae to be applied, any standard subroutines to be
used.

(h) Manual Procedures

This section of the system design specification will define the clerical procedures for the new
system.

(i) Test Requirements

Before a system can become operational it must be thoroughly tested to ensure that (as far as
possible) it contains no errors in the software, and that it meets the requirements laid down in
the requirement specification. This section will define in detail the tests to which the system
will be subjected, to prove that it has been correctly manufactured.

(j) System Set-Up Procedures

Unless a system is completely new, it will be replacing an existing computer or manual system.
All the stored data of the existing system will thus have to be transferred to the new system.
This will be a once-and-for-all task, but an essential one. The mechanisms for the transfer must
be carefully designed. Their design will be written in this section of the specification.

The mechanisms will be both manual and computerised, requiring the definition of special
forms, programs, clerical procedures, etc. – so much so that this section becomes a miniature
design specification in its own right.

(k) Glossary of Terms

A design specification will use jargon terms in order to be precise. The jargon used must be
defined in this section.

(l) Index

In a complex system, the specification will be very large, and an index to it will be a great aid.

D. DESIGN CONSIDERATIONS

Input Design
As you are already aware, commercial data processing comprises four main functions: input, output,
processing and storage. The systems designer will consider each and decide the most appropriate
method to be adopted.

The designer must specify a complete mechanism from the origination of the data through to its input
to the computer. SIX important factors must be considered:

(a) The data capture system must be reliable and reduce the potential for error to a minimum. The
more separate stages there are, the greater the chance of error.

(b) The system must be cost-effective; the cost of reliability must not exceed the cost of errors,
should they occur. For example, there is little point in spending £10,000 per year on a very
reliable system which is error-free when a £5,000 system would eliminate most errors and the
errors would cost only £1,000 per year to correct.

94 System Design

© Licensed to ABE

(c) The geographical location of the places at which the data is originated will have a great effect
on the method chosen.

(d) The response time for output must be considered. The faster the response time, the faster the
data capture system must be.

So, what kind of objectives should the systems analyst have as far as data capture and output are
concerned? We may categorise them like this:

! to minimise the total volume of input, as far as is practicable;

! to minimise the extent of manually prepared input;

! to design input to the system so that the work in preparing it is as simple as possible;

! to minimise the number of steps between origin of the data and its input to the computer.

We have said that two of the objectives are to minimise the total volume of input and to minimise the
extent of manually prepared input. However, we must also consider who is entering the data. The
less the input, the less time and effort needs to be used in preparing it. Also, the lower the input
volume, the less is the extent of errors introduced into the system. There are FOUR aspects to the
minimisation of input volume:

(a) Data which is repeated needs to be entered into the system only once.

(b) Editing and spacing can be omitted from input which is keyed. This makes for more rapid
input. Editing (for example, inserting decimal points) can be implied from the general format
when the input is read into the computer.

Output Design
Output can be presented in many ways. Consider first whether the information is necessarily to be a
permanent record. For example, an on-line enquiry system needs to supply the user with an
immediate report which will be acted upon; after this the information is no longer required. A screen
display would thus be the most appropriate output. On the other hand, employee wage packets must
be printed as a permanent record for the employee.

Four further crucial aspects are:

(a) WHERE is it to be Forwarded?

Which location or departments require the information? In some cases it may be necessary to
send output to people at a different geographical location, and the method of transmitting it will
affect the design of the system.

(b) WHEN is it to be Forwarded?

The timing and related accuracy with which information is made available are crucial. Not
only must the time interval be adhered to (e.g. daily, weekly, etc.) but on several occasions
specific times of days will be stipulated.

(c) WHAT is to be Forwarded?

Quite simply, only that which is required. Any additional information makes the output
unfamiliar to the recipient, and the unexpected is often ignored, hence additional information –
even if thought to be useful – will probably be rejected.

(d) HOW is it to be Forwarded?

This aspect covers such items as the method of delivery and the format in which it is provided.

System Design 95

© Licensed to ABE

Processing Considerations
(a) Batch Processing

The logical processes that have to be carried out assist us in breaking up the overall process into
far smaller ones. As soon as we carry out this split in the overall process, we are faced with the
need to convey information from one process to the next. We create an intermediate or work
file in one process and use it as part of the input to the next process. Usually, the complete set
of input transactions will be handled by the initial process, and an intermediate file will be
created ready for the next stage. This approach assumes that all transactions will be available
for processing at the same time, and is known as the batch processing approach, as we
discussed in a previous module of the course.

(b) Transaction Processing

Many systems require that a transaction be processed as soon as it is received; it cannot wait to
be batched. For such a system we cannot use an intermediate file. In such transaction
processing systems (we previously called these on-line processing systems) we may need to
cope with a number of transactions being processed simultaneously and independently through
the system.

We can now see that the time taken to react to a transaction – the response time – required of the
system will influence the way we tackle its design. The response time will also influence the way in
which the data is stored.

Storage Considerations
The selection of an appropriate method for organising the stored data is another important feature of
the designer’s task. The main points to be considered are:

(a) Volume of storage required;

(b) Method of access (sequential or random) of all processes;

(c) Volatility of the data;

(d) Activity of the collection of data in relation to all processes using it;

(e) Access (response) times required;

(f) Predictable additional volumes and uses.

Maintenance and Expansion
The design of a system must take into account the more or less inevitable maintenance that will be
needed to keep the system up-to-date. If this inevitability is accepted, then design may be developed
in such a way as to make amendments easier to carry out than they would otherwise be.

No single person or group can foresee all possible future needs. A system which is flexible, therefore,
and which can be reshaped when considered necessary in the future, is the ideal. Remember that the
system, including a computer system, has an input, a process and an output which may well be
extremely complex. Aiming for flexibility requires, therefore, that none of these three items is fixed
in nature.

With advances in technology occurring all the time, it may be advantageous to introduce changes to
the hardware configuration without drastically altering the application programs. There may be a
need for more on-line data entry; a remote location may wish to connect in its computer to the central
one; or some word processing applications may want to access the main files or database.

96 System Design

© Licensed to ABE

How easy such changes will be, will depend on the hardware and software selected: although systems
may appear to be infinitely expandable, there are many conflicting “standards” for connecting
equipment together and exchanging data between systems.

Design Constraints
Except with the most trivial of systems, there will be some design constraints imposed by, for
example:

! software standards, languages and operating system;

! hardware configuration;

! interfaces to other systems and procedures;

! safety margins, fault recovery procedures, etc.

Whatever particular constraints apply in a given case, these must be considered from the beginning of
the design process.

E. HUMAN-COMPUTER INTERFACE
As we have just discussed, everyone has an increasing contact with computers. The non-computer-
literate person approaches them with wariness, whilst the fully literate person can be highly critical of
a machine that is obtrusive in their contact with the system being used.

Between the user and the machine is what we call the human-computer interface or HCI. The
interface should be as clear and accessible as possible; consistent in how the approach to the machine
is made and how the machine responds; comfortable to use; and common sense should guide use of
the machine.

Various styles of interface are available.

Command-driven Interfaces
With this type of interface, the user types in a command and the system responds with the appropriate
action. These interfaces are simple to design and use the keyboard for input. Command processing
languages have been developed which are based on simple system commands. For instance, the shell
language in UNIX is a very powerful command processing language and complex commands can be
built from a sequence of simple demands.

Usually there are abbreviations which mean the user does not have to spend extra effort in typing.
Alternatively, commands may be stored in files and different activities invoked by the user by
executing the files.

There are disadvantages in that users have to learn the command language and they are likely to
make errors when keying commands. These also require additional software to handle errors and
diagnostics, otherwise they are not popular.

These interfaces are not suitable for inexperienced users. It takes time to learn them.

Careful considerations have to be made in the choice of system commands. Meaningful abbreviations
need to be used while keeping typing to a minimum, although some systems allow users to redefine
the command names. Users who utilise more than one machine find this useful.

System Design 97

© Licensed to ABE

Menu-driven Interfaces
In a menu-based system, users have to select one of a number of possible choices. The user may type
the name, or an abbreviation for the choice, through the keyboard or use a mouse to indicate the
choice. With some touch-sensitive screens, choice can be made by placing a finger at the selection.

These systems are popular for a number of reasons:

! Users do not have to remember individual commands

! Typing is minimal even for those who cannot type

! It is impossible to make an incorrect choice and crash the system

! Help can be provided at each stage and in context

Experienced users may find menu systems are slower than command-driven systems.

There are two types of menu in use, the pull-down and the pop-up.

! The pull-down menu is on continuous display and picking up a title with a mouse causes the
menu to appear. Inappropriate options are displayed in grey and may not be selected.

! The pop-up menu appears at the cursor position when the mouse button is pressed.

Graphical User Interfaces (GUI)
GUIs are now the most common type of interface. Most operate on a WIMPs basis where the user
selects the required options from the screen using the mouse. It is now common for new application
system developments to include a GUI interface.

One of the major benefits of the GUI approach is that the look and feel can be made consistent. This
cuts the times to learn a new package and it is also claimed that GUIs are instinctive, and experienced
users can easily switch between systems.

GUI and WIMP interfaces are popular because they are easy to learn. The user has multiple screen
interaction, and full-screen interaction is also allowed rather than the line-orientated interaction
allowed by command-driven systems.

Voice
This method of input is still not particularly common. The ability to recognise commands tends to
rely on the user speaking very slowly and clearly. The number of commands which can be recognised
is still quite limited.

Screen Design in Practice
Most modern computer systems include at least some input and output via a display screen and
keyboard, with programs running interactively and the user entering data at the keyboard in response
to messages appearing on the screen. The layout of the information on the screen, and the order in
which it is presented, is a most important part of the design of a system.

We will now look at some of the additional points which have to be considered when such systems are
designed.

(a) Presentation of the Information

Seven points are important here:

! How the procedures can be divided into suitable “interactive screens” so that data is
input in a logical order with only relevant responses being provided.

98 System Design

© Licensed to ABE

! Layout, so that important information is not lost amongst the data appearing on the
screen.

! The order in which data is entered – this should not only be logical, but should also
correspond (wherever possible) with its layout on the source document.

! What type of validation can usefully be carried out at this stage and how the operator
should respond to errors – if data from a batch of forms is being entered, it may be more
reasonable to note any errors which cannot be corrected directly and find answers to all
the problems at the end of the run than to keep interrupting the data entry.

! Error messages must be designed so that they can be easily understood and the correct
action taken.

! When a “flashing cursor” should be used.

! When it might be useful for the system to “bleep” at the user.

(b) Menus

A very common way of presenting a transaction processing system to the user is via a series of
“menus”. For example, an accounting package could have a main menu such as shown in
Figure 5.2.

XYZ ACCOUNTING PACKAGE

1 SALES LEDGER

2 PURCHASE LEDGER

3 NOMINAL LEDGER

4 FILE MAINTENANCE

5 END OF PROGRAM

SELECT OPTION

Figure 5.2: Sample main menu

This menu would appear on the screen once the user had entered the commands to start the
accounting package. The initial commands might include a password, and sometimes people
with different passwords will get different menus. For example, this menu may be available to
senior accounting staff who are allowed to work on the nominal ledger and also carry out file
maintenance procedures which include adding new customers, changing credit limits or codes.
A junior clerk may get a reduced menu such as:

System Design 99

© Licensed to ABE

XYZ ACCOUNTING PACKAGE

1 SALES LEDGER

2 PURCHASE LEDGER

3 END OF PROGRAM

SELECT OPTION

Figure 5.3: Sample reduced menu

If Option 1 is selected, the sales ledger menu will appear.

XYZ SALES LEDGER

1 SALES LEDGER INPUT

2 TRANSACTIONS

3 STATEMENT PRINT

4 CUSTOMER AGED DEBTOR REPORT

5 RETURN TO MAIN MENU

SELECT OPTION

Figure 5.4: Sample second level menu

There are thus various levels of menu which can extend to a third or even fourth level. For
example, entering Option 2 with the last screen will lead to a menu of the different types of
transaction.

Again, care is required when designing menus, since, whilst being comprehensive and easy to
follow, their use must not become tedious to the experienced user. One way of avoiding this is
to allow progress through the menus to be accelerated by the experienced user. If an operator,
given the first menu, knows that journal entries is Option 3 (say) on the transactions menu, it
may be possible with some packages to enter 123 and get directly to the required program
without waiting for the intermediate menus.

(c) Icons

An alternative to menus is the modern trend toward using icon-based screens. Here, small
pictures representing the options are used in conjunction with a mouse to achieve selection.
This approach has two main advantages in that the use of keyboard entry on selection is
avoided and, for many users, a graphical option is easier to understand than lists of written
dialogue. With increasing computer awareness these two alternatives become more “common”
in their usage.

(d) MIS Design

The design of a management information system is little different in principle although a
database is involved, which we have not yet discussed.

100 System Design

© Licensed to ABE

! The product of an MIS is information, mainly statistics, summaries and analysis of
operational information.

! The input is operational information such as production and sales figures, stock levels,
accounts ledgers, personnel levels, etc.,

! The processes are the manipulation of the operational information for MIS presentational
purposes. The constraints imposed on the design will be the complexity of the
company’s activities, the authorised levels of access to specific data, the level of detail
expected by the user and so on.

Batch processing will suffice as it is not the responsibility of the MIS to keep the data up-to-
date. On the other hand, the MIS itself will certainly work on-line.

By using standardised procedures and documentation, maintenance will be relatively
straightforward.

Flexibility for future development is unlikely with an MIS package, although an in-house built
system may include facilities for further development, especially an on-line, user manipulation
of the data provided.

101

© Licensed to ABE

Study Unit 6

Approaches to Systems Analysis and Design

Contents Page

A. Structured Systems Analysis and Design Methodology 102
What SSADM Will Do 102
What SSADM Will Not Do 103
Impact on Project Time-Scales 104
Room for Improvement? 104
Taking on SSADM 105

B. Working with Users 105
Development Stage 106
Operational Users 107
Walk-Throughs 108

C. Rapid Application Development (RAD) 110

D. Joint Application Development (JAD) 110
Methods of Development 111
Flexibility 111

E. Skilled Small Team Development 112

F. Prototyping 112
Techniques and Usage 112
Types of Prototyping 113
Advantages and Disadvantages 113

G. Computer Aided Software Engineering (CASE) 114
CASE Tools 114
Use of CASE 114
Fourth Generation Languages (4GLs) 115

102 Approaches to Systems Analysis and Design

© Licensed to ABE

A. STRUCTURED SYSTEMS ANALYSIS AND DESIGN
METHODOLOGY

High maintenance systems usually result from an incomplete understanding of the requirements at the
development stage. Structured Systems Analysis and Design Methodology (SSADM), developed
originally in 1980 for central government use, provides a sound procedural framework for systems
development from the beginning.

Since the early days of commercial computing, thousands of people have been involved in the
production of computer systems. Their results range from acceptable to disastrous. In general, there
has been a great deal of dissatisfaction amongst users of computer systems at the products they have
been asked, or forced, to accept.

Most of these were produced using “traditional methods” of development, usually meaning hardly any
method at all. Statements of requirements were produced in a rather sketchy manner, and as quickly
as possible in order to get on with what was perceived to be the real work – writing programs and
performing other activities associated with producing computer systems. In other words, producing a
physical solution before the problem had been fully understood. The results of this approach can be
seen in the form of systems which do not satisfy users’ real requirements and which are difficult and
sometimes impossible to change.

Having been implemented, these systems usually consume significant amounts of computer
department resources in attempts to make amendments. This is known as “maintenance”. Perhaps a
better name for much of it would be “retrospective analysis and design” since it is largely concerned
with tacking on processes and data which should have been incorporated, had they been discovered,
during development rather than after implementation.

It is because there has been an eventual realisation of the need to improve the product, that more
structured and rigorous methods of analysis and design have been developed. One of these is the
Structured Systems Analysis and Design Method, more popularly known as SSADM.

Its purpose is to provide the analyst and designer with the tools and procedures to enable the
production of computer systems which provide what people want, and which are robust and capable
of amendments to cope with future changes.

SSADM consists of six stages:

1. Investigation of current system;

2. Specification of required system;

3. Selection of technical system;

4. Data design;

5. Process design;

6. Detailed physical design.

Each stage is broken down into steps – which are named and have unique numeric identifiers – and
steps are further subdivided into tasks, which are identified by numbers within the appropriate step.

What SSADM Will Do
Many computer departments and development teams engaged in the production of a new computer
system without the use of a standard development method, find themselves struggling with a

Approaches to Systems Analysis and Design 103

© Licensed to ABE

communication problem. Communication between themselves, that is, let alone user departments!
How do we communicate if not by the use of a common language? If the language used is one which
allows description of a physical computer system using such documentation as program specification,
system flowcharts, runcharts, program logic charts, etc., then little communication is possible before
the proposed system is designed, often in great detail and perhaps even with some programs already
written. At this time the die is very nearly cast when problems are encountered in the design, changes
are often difficult and complicated.

SSADM provides the means by which to communicate knowledge and perceptions about the
requirements right from the initial stages of system investigations when changes are relatively easy to
cope with. To achieve this, the method utilises techniques, such as data flow diagrams (DFDs),
logical data structuring (LDS) and entity life histories (ELHs), to provide pictorial views of systems
which can be used as both development and discussion aids. (We examine these three techniques in
detail in the following units.)

Since these techniques provide views of systems from different perspectives – DFDs providing the
processing view, LDS the underlying logic of the data structure and ELHs the effect of time on the
system – an amount of cross checking is available between the different views, invariably resulting in
an increased understanding of the requirements. This understanding is further enhanced by involving
users throughout development, the principle being that the common language resulting from the
application of SSADM can be understood by non-computer people.

The statement of requirement which emerges from the use of SSADM, describes the required system
in terms independent of any physical hardware and software constraints and characteristics, allowing
the decisions about physical implementation to be made quite separately.

Stages 4 and 5 of SSADM are concerned with the production of a logical design which provides a
basis for physical design and implementation, with the aim of fulfilling the known requirements and
also providing a design which is amenable to change, enabling future needs to be incorporated with
the minimum of effort and expense.

Conversion of this logical design into a physical equivalent consisting of program specifications and a
set of files or a database design, takes place in Stage 6 of SSADM.

What SSADM Will Not Do
SSADM undoubtedly provides a sound procedural framework for systems development. Within this
framework lies the application of some very useful techniques. What the method does not do, is
replace the skills and expertise of the systems analyst and designer. Given these skills, the use of
SSADM will almost certainly produce better systems – those which meet the current need and are
able to cope with future needs. It is, therefore, a mistake to view the method, as some organisations
have done, as a substitute for trained and experienced staff. To do so is to invite disaster in the form
of projects which grossly overrun their planned time-scale and, in some cases, are never ending, i.e.
abandoned.

Since one of the overriding principles of the method is that users should be involved throughout the
development life-cycle, it follows that there must exist an atmosphere of co-operation and enthusiasm
for the approach. SSADM cannot engender this. It must be created within the organisation, firstly by
management acceptance and secondly by adequate training and education. Only in this way can the
people involved gain an understanding of what can be achieved, their role in achieving it and the
commitment to make it happen.

SSADM is a method of analysis and design. The final output, essentially, is a physical data design,
program specifications and a plan for the programming and implementation phases. It does not

104 Approaches to Systems Analysis and Design

© Licensed to ABE

produce coding nor does it cover the use of program design methods. It is not intended to! It also
does not cover a whole range of activities associated with computer systems design and
implementation, such as equipment procurement, site preparation, etc., which must take place in
parallel to the SSADM tasks.

Impact on Project Time-Scales
It is often assumed that the use of the method will almost certainly extend the time-scale of the project
being undertaken. There is no real evidence that this assumption is true. Since it is unlikely that
information will be available as to how long a given project would have taken without the use of
SSADM, as opposed to with it, then usually no comparison can be made.

What is evident, however, is that a more complete system encompassing more of the users’
requirements, should emerge from the use of the method. What is also evident is that the taking of
short cuts to implementation becomes more difficult since, using SSADM, the development of a
physical system in terms of programs and files is likely to begin much later in the project life-cycle
than would be the case without its use. This severely restricts the developers’ opportunity for
implementing something which satisfies only part of the requirement in the hope that the rest can be
added later in that part of the life-cycle referred to previously as “maintenance”.

Although SSADM is not a project control method, it is well suited to environments in which formal
methods of controlling projects are used. The decomposition of the work involved in developing
systems into specific stages, steps and tasks has two distinct advantages to the project controller – it
provides a basis for estimating and, through the existence of formal products signifying completion to
a certain point, a means of monitoring progress.

The method recommends the setting up of a steering committee on which should be represented the
IT department, the management of every user department involved in the development, and corporate
management. The latter is needed because of the likelihood that decisions will have to be made at this
level and because of the financial implications arising from the cost of development. The exact
composition of this committee will obviously vary from organisation to organisation.

Room for Improvement?
SSADM has been further defined over the years since its first implementation. It is probably the best
defined method for developing computer systems and is generally recognised by the Central
Computer & Telecommunications Agency (CCTA), and other users. Scope still exists for further
improvement and, indeed, it is likely that the process of evolution will continue.

Criticism has been expressed at the starting point of SSADM, beginning with the first stage devoted to
a detailed investigation of the current system and its problems. These criticisms are largely associated
with the amount of time which this can consume. A consensus view is that this stage is vital to the
success of the project and that there is no better place to start, although some guidance is needed on
how to approach situations where multiple versions of current systems exist in perhaps separate
geographical areas or outposts of the same organisation, when the objective is to produce one
common solution. In a similar vein, the method does not make any reference to starting up projects
where no current systems exist at all.

Whilst both these scenarios can be coped with given knowledge of the method, specific guidelines
would be useful. Concern has also been expressed about the difficulties encountered in using some of
the techniques, specifically Entity Life Histories and Logical Dialogue Design – the former because it
is a complex and difficult technique anyway, and the latter because it is not particularly well defined.

Approaches to Systems Analysis and Design 105

© Licensed to ABE

Further difficulties are caused by the poor definitions of some key terminology in the method, e.g.
“events”, “functions”, “operations” and “processes”. These examples, whilst not in themselves
serious defects in the method, and which can be handled by the experienced practitioner, still prove
rather daunting to the analyst embarking upon his or her first SSADM project.

Finally, although making a brave attempt in Stage 6, the method does not solve the problems
associated with making the transition from a logical design to a physical computer system. It must be
said, however, that attempts to generalise about this minefield of a topic almost always run into
trouble because of the widely varying hardware and software features which abound from installation
to installation.

There is no substitute for the designer’s knowledge, skill and awareness in this area.

Taking on SSADM
If you, as computing manager, believe that SSADM has a useful part to play in systems development
within your corporate environment, then an action plan will be required. Here is a plan for the
introduction of the method:

(a) Obtain Corporate Approval

To be successful requires commitment at all levels. Systems development using SSADM is no
longer solely a computer department job; it demands user and management involvement.

(b) Pick a Pilot Project

Such a project might be one which can be started within, say, the forthcoming six months and
can be finished within a year and has clear objectives. It is vital to achieve some quick success!

(c) Train Development Staff

Analysts and designers should receive full training in the method from a CCTA accredited
training provider. You may wish to take advantage of the relatively new examination courses
which lead to the nationally recognised Proficiency in SSADM Certificate as administered by
the British Computer Society’s Systems Analysis Examination Board.

(d) Train Users

Users will require some training. As a minimum they should be briefed on the SSADM
products with which they will come into frequent contact.

(e) Plan for Post-Training Support

Most development teams embarking upon their first project feel the need for some expert
guidance from time to time. The concept of using some outside consultancy help should be
given serious consideration. The resultant saving in time and improvement in quality will
invariably justify the cost.

If the use of a structured method is accepted, then SSADM is a good way forward, as long as
the commitment is not underestimated by all concerned.

B. WORKING WITH USERS

We have already seen how the SSADM technique requires user involvement and, in an earlier unit, we
emphasised the value of user involvement at all stages of a project. As we have said, then, it is
desirable for the potential users of the system being designed to be consulted from the very beginning.
But what is meant, exactly, by “user involvement”? How do we involve the users?

106 Approaches to Systems Analysis and Design

© Licensed to ABE

Development Stage
The answer to these questions will depend upon the user’s level of responsibility. We can identify
users as senior management, line management and non-managerial staff. These are concerned to a
different extent, and in a different manner, with line managers probably being the most involved
during the design and implementation stages.

(a) Senior Management

Total organisational involvement is essential to the success of any system effort, and the
participation of top managers is necessary in the decision-making process. The use of
committees and special presentations may be effective at different times, but two-way
communication is necessary. The DP department must know the overall requirements and
objectives of the organisation it serves and to feel a part of this organisation.

The other aspect is that senior management may not be aware of the potential advantages of
new or developed applications, and these should be brought to their attention, by analysts, to
make management more sensitive to new approaches and concepts in DP.

It is part of the systems analyst’s job to persuade people of the importance of (and benefits
accruing from) a project, but this may not always be successful as the personal motivation of
the staff will affect their attitude. The knowledge, however, that senior management is
associated with the project raises the chances of its being accepted.

(b) Non-Managerial Staff

Important ways of involving non-management user staff include:

! providing them with an understanding of the DP department objectives;

! keeping them informed as to progress;

! consulting them constantly during fact-gathering and design stages;

! keeping in touch with user staff during the working-in of the new system, and working
with them wherever possible;

! training them in the use of the new system;

! post-implementation consultation.

(c) Line Management

Because line managers are so affected by new systems, it is important that they give their
support to the project. SIX main areas of involvement may help to achieve this.

! Sharing DP Objectives

Periodic discussions and occasional formal presentations will inform managers of (and
involve them in) systems development plans.

! Appointment of Representatives

Line managers could be asked to appoint project team or liaison staff. For every systems
project, irrespective of its size, it is sound policy to ask the department(s) affected to
appoint some representative(s) to be the chief point of contact. The representatives’
function would be to make sure that the needs of their department are made known and
are being met, and generally to make themselves felt. They would also assist in
gathering information and in implementing the system. Where the project is medium-
size or large-size, the representative would be a full-time member of the project team.

Approaches to Systems Analysis and Design 107

© Licensed to ABE

! Report on Progress

Frank and honest reports should be made concerning the progress of the project, whether
it is fully operational or still being developed. Line managers will thus not anticipate too
much too soon.

! Assistance with Project

Managers concerned with a particular department will surely know more about its work
than anyone else. The team itself can comprehend the workings of any department only
with management assistance. Line managers can therefore help by:

(i) Providing the team with any documentation, such as organisation charts, work
flow diagrams, data flowcharts, procedure manuals, job descriptions, sample
documents and forms, etc.

(ii) Discussing with the team, problems which may have arisen in the existing system.

(iii) Clarifying and explaining their department’s work.

(iv) Making arrangements for the team to interview more junior members of staff at
appropriate and convenient times, to appreciate the detailed and finer points of the
present system. (Managers should, of course, know about the shortcomings of
their own departments and have ideas as to how these problems may be tackled –
the feasibility study team will welcome discussions on these matters and possible
solutions, and ideas will be exchanged before the proposed courses of action are
set down in the feasibility report.)

(v) Managers should also give considerable thought to the nature of the computer
outputs provided by the new system – computers are good at making comparisons
and at data analysis and they can provide exception reports instead of large
volumes of routine data; management (not the computer specialists) must decide
what an “exception” is, and what analyses are going to be of use to them.

! System Testing

We will look at some aspects of this later in this section.

! Operation of the System

The user involvement here, especially of line management, is fairly obvious. With
modern distributed systems, it is the user department personnel who actually use the
system, via keyboard terminals.

Operational Users
Whilst it will be management who are primarily consulted during a development project, once a
system is up and running, the users of a modern system become the ordinary staff of the organisation,
and others. We are then able to identify four different types of user who are able to access, and be
involved in, a system. This, in turn, justifies their claim to be consulted during the development stage
so that particular requirements can be satisfied.

(a) The Parametric User

The most common type of computer system user uses some kind of terminal. Such use is often
routine and clearly defined, with predefined responses.

Typically, a telephone order or enquiry clerk has a screen and keyboard. He or she asks for
specific details (e.g. the caller’s customer number), keys this in via the keyboard and then

108 Approaches to Systems Analysis and Design

© Licensed to ABE

continues to respond to requirements of the system. The screen will initially generate menus
and eventually a single entry.

The clerk will probably be able to request further access via specified paths through the system.

Such a user is termed “parametric” as strict parameters of use must be followed.

Another example of a parametric user is the shop checkout operator who uses a computer
terminal under very narrow pre-set parameters. The shop supervisor, who can override these
parameters, is still a parametric user as the supervisor still uses a (different) set of parameters.

(b) The Casual User

At some time or another we are all casual users of a computer system. Such a user makes
infrequent use and knows nothing of how the system works.

The only viable interface such a user has to the computer is screen menus, or more likely
nowadays, a graphics/windows screen. These are just sophisticated menus with the user
selecting a graphic screen symbol using a mouse device or a touch-screen device. In turn,
further screen options are generated either for the whole screen or for parts of the screen, i.e.
windows.

(c) The General User

The general user needs a fairly comprehensive knowledge of how to use the system. He or she
does not need to know how the system is constructed or even which files are used, but does
need to know how to access the system and manipulate the results.

A typical example of a general user is a manager accessing a management information system.
He or she will use the system in an unstructured way, making unpredictable and ad-hoc access.
The interface needed for this will be a query language and we shall discuss these in a later study
unit.

Clearly the general user will need to be trained in the commands of the query language. In their
use, such a user will himself or herself be driving the system, i.e. initiating action.

(d) The Programming User

This user has a fairly predictable role in using the system. The programming user needs access
to the actual code and to test data, but not necessarily to live data.

It is important to be aware that none of the above users need to be given access to the actual
computer room. This is a basic security precaution. However, all of them should be consulted
in some way before the system is finally designed.

Walk-Throughs
Another development stage at which users become involved is testing the proposed design. Before
the design is sent forward for programming, it is important to assess its ability to meet the original
requirements.

At this stage, the design will be almost complete and will consist of the system design as a whole and
the individual program designs. The programs will, in turn, consist of a series of self-contained
modules, for which there will also be designs.

(a) Purpose

One of the main problems in systems design is that of logical errors. These arise from a fault
in the flow of a program or in a control structure within a program. Typically, wrong selections

Approaches to Systems Analysis and Design 109

© Licensed to ABE

are set or a loop is executed the wrong number of times. A good way to eliminate at least some
of these errors is to perform a “dry run” or “walk-through” of the program design. This will
involve assuming some initial data and then following its processing through the design steps as
a paper exercise.

It is generally advised that this exercise be performed by someone other than the designer, or at
least in the presence of someone else, since the designer will be influenced by his or her
expectation of the program design’s behaviour and may not see obvious faults. Ideally, a
knowledgeable user could make the walk-through. Such a walk-through can be applied to the
original algorithm in the design language or even to the original structure charts.

It is much easier to analyse the design in this way if it uses structured techniques. These
techniques essentially involve subdividing a design into separate components, which may then
be independently called by the main program design. This means there are many self-contained
pieces of design that can be easily analysed, as each will do one job only.

In fact, walk-throughs can be conducted at any stage of the design, although the principal
structured walk-through will be made on the completion. As well as the knowledgeable user, or
peer designer with the user, there should be representatives of the project manager, quality
control section, internal auditors, and others as appropriate.

The structured walk-through review process is not a problem solving session. It is a detached
review of the design work to date. Any problems found should be referred back to the designer.

(b) Value

The main benefits of a walk-through are:

! It brings a fresh check on the effectiveness of the design;

! It develops trust in the design;

! It reassures all the parties affected by the design;

! It ensures the participation and approval of all the parties affected by the design;

! It encourages open communication between all those involved.

(c) Hand-checking

It is impossible to overemphasise the fact that successful programming is based on willingness
and thoroughness in hand-checking. Each stage from design to program should be hand-
checked. All are before valuable computer time is spent in looking for program faults. The
cost of computer processing time is such that a moment of program failure is far more
expensive than, perhaps, an hour of a designer’s time. Silly design errors are therefore very
costly in computer development time and should be totally eradicated by good hand-check
walk-throughs.

Hand-checking involves the following steps:

! Examining the program specification in detail and ensuring that the objectives are being
achieved.

! Ensuring that the program instructions agree with the program flowchart.

! Checking that individual program instructions are correct. Remember that a
programming language requires 100% precision in the use of characters, words and other
symbols.

110 Approaches to Systems Analysis and Design

© Licensed to ABE

! Preparing test data and working through the program, instruction by instruction, to
ensure that the test data is processed correctly. It may take a programmer several hours
to hand-check what a computer can do in minutes. However, a computer may stop after
one program error and need several runs before all errors are corrected. A programmer
should find all these errors in one detailed examination.

The use of modular construction allows each independent part of the system to be tested before
it is integrated into the rest of the system. This principle can and should be extended to smaller
components such as individual procedures, where these are relatively self-contained. If,
however, they depend on the presence of a complex data structure, it is more practical to test
the parts of the system that build the data structure before testing the parts that access it. The
system can, in fact, be built up in stages, each stage adding some more facilities to the ones that
are already (partially) tested. The degree to which completely independent testing of modules
is possible depends on the particular design, and it is impossible to generalise. As in so much
design work, common sense and experience are both valuable in choosing the correct course.

C. RAPID APPLICATION DEVELOPMENT (RAD)
Until fairly recently, all project development work was a lengthy and very slow process. The
development life cycle dictated a highly structured, standardised approach in order to cover each
element precisely. Over the last twenty years, though, the cycle has been broken down by the
application of new methods and techniques which may be grouped together under the general title of
Rapid Application Development (RAD).

There are four principal approaches within RAD:

! Joint Application Development;

! Skilled small team development, or SWAT (Skilled With Advanced Tools) teams;

! Prototyping;

! Computer Aided Software Engineering (CASE).

We shall study these approaches in the next sections of this unit. However, it is important to remain
aware that these are just aids to development. In themselves, these tools do not provide designs, code,
etc., other than what the developer decides.

Underlying all RAD approaches is the active participation of the user in development. The user
should be involved in all structured development techniques. However, SSADM, for example, only
requires the user’s approval of the separate stages; and sometimes to act as a reference point to clear
up requirement ambiguities. On the other hand, RAD requires the user to be part of the actual
development team and not just an approval/reference point. It is this involvement which enhances the
speed of development.

D. JOINT APPLICATION DEVELOPMENT (JAD)
Common system development is the development of a system that is going to run on more than one
computer (even a different manufacturer’s hardware) and possibly for more than one organisation.
During such development, several user departments, or companies, will be involved. Because of the
complexity of such development, it is even more important than normal for all the users to be
consulted and to be aware of every stage of the project.

Approaches to Systems Analysis and Design 111

© Licensed to ABE

Methods of Development
JAD is a technique particularly applicable to the analysis stage of the life cycle.

It usually involves a series of intensive workshops between the users and the developers and it
replaces the conventional interview/questionnaire fact-finding activities. During the workshops the
exact requirements are identified by those who have the authority to agree them. The development
staff, who will also be expert in business applications, will help with technical design matters which
arise and then record the agreed requirements in a CASE software tool.

Following the JAD sessions the development staff will prepare detailed models of the proposed
system using the agreed requirements.

Several approaches are possible.

(a) Customer Specification

A customer specification can first be derived and then used as the minimum requirement for
each organisation to develop its own system. This approach implies that each organisation or
part of the organisation that requires the system has its own complete DP set-up for the
development and operational running of the system. At first sight, this might seem to be very
wasteful of development resources. However, if the system involves interfacing into a number
of other systems which are local to that organisation, this could be a more attractive approach.

(b) Program Specifications

Some systems design effort can be saved by designing the system in one location and then
using the program specifications as the basis for achieving commonality between systems. This
approach, like the previous one, relies on having development staff at all locations. It certainly
overcomes the problems of language as it would be possible for the different locations to use
their own high-level language.

(c) High-Level Language Code

Another approach is to have a common high-level language code. This is probably best
achieved by developing just the central core of the code using an agreed subset of the language
that is acceptable to all machines, and letting each site develop the input/output part of the code.
This achieves a good commonality without having to cater for many different interface
problems. Also, as with the previous approaches, it relies on development staff being available
at the separate sites. This certainly makes maintenance and operational troubleshooting easier.

(d) Low-Level Compiled Code, or Absolute Code

As a final illustration of an approach, the low-level compiled code or the absolute code can be
produced centrally and distributed to the individual sites. This certainly gives the tightest
control to the central organisation, and ensures that each site is using exactly the same system.
It also means that the central site has suitable facilities to compile into the individual machine
codes, and will subsequently have to cater for all the modification requirements.

Flexibility
Systems development for several common situations must have some in-built flexibility. The designer
will take the differences between the systems into account.

112 Approaches to Systems Analysis and Design

© Licensed to ABE

Typical differences are:

! Common terms are notorious in that they are not “common”; hence “despatch date”, “days of
credit”, etc. can vary just sufficiently from one organisation to another to require parameter
definition.

! Policy data will require changing, for organisations will differ in what defines a debt, for
example, and this is associated with the policy of running the business.

! Different users will require slightly different reports from a system, in terms of frequency of
production, depth of detail and order of data in the report.

! Different media are used for data capture, printing, processing speeds, etc.

E. SKILLED SMALL TEAM DEVELOPMENT

Skilled small team development or, as it is often known, Skilled With Advanced Tools (SWAT) teams
describes the development team in a RAD environment.

SWAT teams should ideally comprise about four to six highly motivated people with complementary
roles in the development process. They need to be skilled in the various techniques associated with
rapid application development, and are most effective in the following situations:

! On small projects of limited scope and impact, although larger projects can be divided into
smaller sections to make the JAD approach more effective;

! On projects not requiring new hardware or software;

! When CASE (or 4GL) tools are available.

F. PROTOTYPING
The models which are prepared following either detailed structured methods or the JAD sessions are
essentially pictorial representations of the system. They may be used to build a prototype, or initial
working version of the system.

Prototyping is a useful development tool. It is a screen-based development tool, the two main features
of which are:

(a) Users should be involved in development.

(b) Users do not know what they want until they see it.

The concept is that we view data as an important entity in its own right. So the first consideration is
the data. Alongside this we consider the type of structure that will hold the data. By manipulation of
a screen interface, the data and the data structures are fashioned to particular requirements.

Techniques and Usage
Prototyping uses a special generator package. The construction is rapid, enabling the generator to go
through many interactions until the user sees a screen layout and dialogue which suits him or her.
This will, in fact, represent a data structure and data definition.

The technique involves sitting the user in front of a screen and, working closely with the systems
designer, evolving a screen interface satisfactory to the user.

Approaches to Systems Analysis and Design 113

© Licensed to ABE

The systems designer then goes away and develops the real system based on the prototype, using
other development tools, and in particular the graphics package. Occasionally the prototype is itself
adopted as the real system, but this is normally avoided because the prototype is generally inefficient
in its use of computer resources and, usually it will not contain all the features required by the user.

The prototyping technique has come a long way from its early days. Originally it was used for fairly
simple systems and to develop straightforward screen formats. Later it was realised that by getting
the screen correct, the designer had, in fact, developed an interface with the system itself. This made
prototyping a powerful tool as, with such a large user involvement, and bringing the system to a point
where it responds directly to the user, the designer was able to meet directly the requirements
specification as perceived by the user.

The designer is often keen to exploit this advantage and to use prototyping in even more complex
project developments. Not only that, but by using prototyping, and its necessary user involvement, at
every stage of development, the designer is able to enhance the project management and aim for a
“getting it right first time” approach, or as it is nowadays labelled, the “total quality approach”.

Types of Prototyping
There are two types of prototype, depending upon the stage at which the technique is first used.

! If the prototype is used to define further the user requirements, the resulting whole system will
be coded, maybe even in a different language to that used for the prototype. This then replaces
the prototype, which is known as a “throw away prototype”.

! The second type of prototype is that favoured in a RAD environment. The prototype is
repeatedly refined until the final system evolves. This is “evolutionary or incremental
prototyping”.

This means, in effect, laying a prototype interface for testing on to a prototype interface design
which, in turn, was laid on a prototype of the data structures. In other words, the prototype for
each stage is further developed to the next stage, giving evolutionary prototyping. Whilst this
seems very much common sense, it does depend on the availability of the supporting
development software. The designer is thus using certain software tools, for example a data
dictionary, to enable him or her to use another development tool, prototyping. This is another
way of viewing evolutionary prototyping, as it means using tools in certain particular ways to
bring development closer to the user.

Advantages and Disadvantages
Prototyping has many benefits:

! Most of all, it satisfies users, especially if it grows out of JAD sessions, as users are fully
involved;

! It is quicker. It has only very necessary documentation and training occurs during the
prototyping sessions;

! It produces a working solution;

! It eases communication problems between users and development staff.

It does, though, have disadvantages:

! They are difficult to handle at first because of development staff inexperienced in the technique,
their lack of control during prototyping sessions and the probable lack of reasonable prior
planning;

114 Approaches to Systems Analysis and Design

© Licensed to ABE

! It is difficult to prototype large systems because of their complexity;

! Users usually want to use the prototype immediately without the necessary background support
work.

G. COMPUTER AIDED SOFTWARE ENGINEERING (CASE)

The most useful software tools during evolutionary prototyping are Computer Aided Software
Engineering tools, as the evolutionary process will be based on the CASE models, not the actual code.

Computer staff have been developing systems to help production controllers, accountants, personnel
officers, etc., for the last 30 years. Yet it has only been in recent years that attention has focused on
using computer systems to help all systems development staff. Programmers have been well
supported for many years, with editors, compilers, linkage editors, loaders and run-time systems, but
what about project managers, systems analysts, systems designers, program designers? Various
individual pieces of software have been produced over the years, e.g. to assist in project planning or in
database sizing, which help out on a piecemeal basis.

CASE Tools
CASE provides a range of tools which can be combined in various ways to meet the particular
requirements of the development project. The minimum necessary components will be:

! A graphical tool to enable the analysis and design models to be displayed and manipulated on
screen;

! A data dictionary to hold common data definitions and hence avoid repeating this task;

! An application generator to produce program code;

! Management tools to aid the monitoring of the project and to produce the necessary
documentation.

Other facilities which can be provided by CASE tools are:

! Maintaining and verifying consistency during development;

! Prototyping directly with the user to produce acceptable screen interfaces.

Use of CASE
The benefits achieved in using CASE certainly outweigh the upheaval and cost of its introduction.
System development is much more streamlined and standardised due to the integration of all the
development activities. With the increasing complexity of systems and of new applications,
organisations are beginning to realise that integration of all the methods used is essential.

CASE tools are of most use when linked to a development method. In doing this, the existing method
must be reassessed to accommodate CASE, with consequent retraining of technical staff.

CASE tools are particularly useful in keeping the compatibility between the models and the code.
This accounts for their usefulness in prototyping.

The one drawback, at present, is that the standardisation required throughout the industry is not yet in
place. As CASE operates through a variety of environments, from PCs to mainframes, it cannot be
fully adopted until full standardisation is agreed.

Approaches to Systems Analysis and Design 115

© Licensed to ABE

Finally, a word of caution. There is nothing very fanciful about CASE. Normally, it is just a set of
documentation tools which allow the designer to manipulate development diagrams on a screen and to
store design definitions of the components of the system being built.

Thus, you will readily see that CASE, sets of documentation tools, whatever we call them, are simply
software packages. They run on stand-alone personal computers with graphics facilities. Sometimes
they run on work-stations linked in to a project database held on a supermicro.

Fourth Generation Languages (4GLs)
Unfortunately, there is no strict definition of the term “fourth generation” – it is primarily used in
sales literature and has been applied to a wide range of software products offering appreciably
different facilities. In general, however, products advertised as being fourth generation enable
business computer systems to be constructed much more quickly than earlier generation products,
such as assembly language and COBOL.

You may have been involved in setting up a number of business computer systems using third
generation language. If so, you will have noticed that the same basic types of processing occur time
and time again, e.g. validation of new data entered into the system, insertion/updating/deletion of
records, production of reports with headings and totals. The designers of fourth generation products
have identified what they consider to be the basic types of processing, and have built these into their
“language” from day one in order to speed up the construction of application systems. The
architecture and use of a typical fourth generation product is shown in Figure 6.1.

4GLs should provide a complete life-cycle development tool, from the beginning to the end of the
project.

Figure 6.1

The facilities above the dotted line in Figure 6.1 may be used where the processing involved in an
actual application system fits into one of the defined types supported by the product being used.

116 Approaches to Systems Analysis and Design

© Licensed to ABE

Many application systems, however, will have a proportion of processing that does not fit, e.g. the
production of tape files in a special format for another computer system, and this proportion will need
to be handled using third generation tools. Note also that some fourth generation facilities are
designed for end users, whereas other facilities can only be realistically used by professional system
development staff.

Typical features offered by 4GLs are:

! File definition and maintenance procedures.

! Screen-based input and validation, allowing users to specify the screen format and validation
approach.

! A query language which can access the data via simple, albeit structured statements.

! A report generator which will produce reports when given certain parameters.

At the centre of a 4GL is the data dictionary. This is just a database full of relevant design facts. Any
amendments required can be made to the data dictionary and will then be reflected throughout the
4GL system.

As we have said, different 4GLs have different features and will help the system designer in different
ways. For instance, some are heavily database-orientated and have a query language, report writer,
screen handler and graphics. Others are form-orientated and produce screen forms that are to be filled
in. When backed up by a procedural language, this type is useful for inputting system requirements.

Yet others are basically procedural languages in a new high-level style. This just means normal
procedural languages such as COBOL, FORTRAN, etc., but supported with the main requirements of
validation, data structure building and so on, all built in. They are therefore much more powerful
design tools.

117

© Licensed to ABE

Study Unit 7

Data Flow Diagrams

Contents Page

Introduction 118

A. System definition 118

B. Structured Systems Analysis and Design Methodology (SSADM) 118

C. Data Flow Diagrams (DFDs) 119
Example 1 120
Example 2 121

D. Drawing Data Flow Diagrams 123
General Rules 124

E. Advantages and Disadvantages of DFDS 124

F. Worked Examples 125
Suggested Answer 125

118 Data Flow Diagrams

© Licensed to ABE

INTRODUCTION

Communication and information lines are vitally important to the smooth running of any organisation.
Where documents are passed through several departments or sections, the flow of information cannot
be easily described by narrative alone and are best shown through the use of different types of
diagram. The most commonly used diagram is the data flow diagram.

A. SYSTEM DEFINITION

Before we look at data flow diagrams, it is useful to understand what a system is, and define such a
notion.

A system has: -

• An input

• An output

• A process that transforms the input into the output

• The process is itself a system and consists of one or more sub-systems, each of which are
themselves systems. The sub-systems act in a co-ordinated way, so that the output of one sub-
system is the input of another and they all act towards the common function of the overall system
process.

• A boundary which is the limit of the influence of the process

• An environment which is everything beyond the boundary. The input source and output
destination lie in the environment

As an example we can think of a college system.

• The input is the learning conveyed by tutors and the output is the learning received by students.

• The process is the total functioning within the college, including all the lectures, the
administration and the heating and other building and catering functions.

• The process system consists of innumerable subsystems such as the programme of lectures, the
employment of lecturers, the ancillary staff, the kitchens, the janitorial functions, and so on.

• The boundary is the limit of everything done by the college. This may be the courses
themselves, but if the college does outside catering or puts on a theatre programme, then the
boundary is defined wider.

• The environment is the city or town in which the college exists, and the educational system of
which the college is merely a subsystem.

B. STRUCTURED SYSTEMS ANALYSIS AND DESIGN
METHODOLOGY (SSADM)

We always need to decide which development method is to be used for a particular system
development. This will usually depend on the way the company sees itself and on the skills of the
analyst. In most cases, the method called SSADM (Structured Systems Analysis and Design
Methodology) will be the choice. SSADM is a widely used analysis and design methodology. It is
also the methodology that uses the techniques of analysis that we are going to study.

Data Flow Diagrams 119

© Licensed to ABE

There are six stages that generally follow a fixed series of steps that broadly follow the development
cycle of a project. However, there is a strong emphasis in the involvement of the commissioning user
in the methodology.

The six steps are: -

Stage Action Comment

Stage 1 Analyse the existing situation to provide current data
flows and entity-relationship models.

Stage 2 Produce a requirement specification with proposed data
flow diagrams and entity-relationship models. It is at
this stage that WHAT the system is to do is separated
from HOW it is to do it.

Stages 1 and 2 are the analysis
stages.

Stage 3 Involve the user in choosing the alternative which best
suits their needs. This stage is most important, as, at
the end of the day, it is the user who best knows what is
wanted.

Stage 3 brings the
commissioning user into the
development so that the user
can approve what is proposed.

Stage 4 Produce a complete design of the proposed system.
Whereas Stage 3 says WHAT the system is to do, Stage
4 says HOW this is to be achieved.

Stage 5 Break the design down into detailed parts in order to
evolve the structure required.

Stage 6 Provide the program specifications and file/database
definitions.

Stages 4, 5 and 6 take the
developer through the design
and implementation stages of
the system project.

The main principle behind analysis, design and implementation is that the whole system is divided
into separate modules, each module generally covering only one activity within the system. Many
modules are linked together to make up the whole system. This ensures the integrity of the
development as the modules can be tested individually. It also helps any subsequent maintenance or
update of the system, following implementation, as individual modules can be identified, accessed
and changed without undue effect on the system as a whole. In addition, the SSADM methodology
separates WHAT the system is expected to do from HOW it is to do it. This is a fundamental point
which ensures a logical view of the system is taken at first, and on when that is satisfactory are the
physical aspects considered.

C. DATA FLOW DIAGRAMS (DFDS)

Data flow diagrams are used to represent the system being analysed. The diagrams use four basic
elements, the styles of symbol used are not intended to imply any physical representation.

120 Data Flow Diagrams

© Licensed to ABE

External entities are things which exist outside the system
and which send or receive messages from the system. These
may be users or other systems. By definition these are the
source and destination of the information flow that is being
modelled.

Processes, any activity that alters data in any way.

Data stores correspond to master files of data whether they
are manual, computerised or a database, or indeed any unit of
stored data.

Data flows are the pipelines along which data moves
between the other components of the system.

Although the style of these symbols does vary in different publications, the meaning of the diagram
should be clear to you.

As with other graphic techniques, there is a limit to the amount of detail that can be shown while
retaining the essential clarity of the diagram. It is, therefore, necessary that every symbol be given a
name that can then be looked up in the documentation to obtain more details. The simplest situation
is where data flow diagrams and data dictionaries are used together with corresponding entries in the
dictionary for each process, store or flow. However, data dictionaries are not essential and data flow
diagrams can cross-refer to any type of documentation. (N.B. A data dictionary is a computerised
reference point containing all the details of a system.)

There are several methods by which data flow diagrams can be constructed, each corresponding to a
system design method. One large multinational uses a bottom-up approach, starting with a flow to or
from a user (external entity) and progressing through the whole system at this detailed level. Flow
diagrams are a popular technique; they emphasise the use of a top-down approach, starting with the
most global/high-level functions and the major data flows in and out of these. A diagram with a small
number of boxes is constructed to represent the top level. This is then expanded to produce a more
detailed diagram, and so on. A halt is called when each process box corresponds to a single task or
module, which can be clearly and simply defined. They are a very useful and flexible charting
technique.

Example 1
The following example illustrates the use of data flow diagrams to show the progressive development
of detail within a system.

In figure 7.1, there are only three boxes; these show that the basic function of the SALES LEDGER
SYSTEM is to process the INVOICES and PAYMENTS. This is a level 0 diagram, also called a
context diagram. It has only one process.

Data Flow Diagrams 121

© Licensed to ABE

Figu

The second version (figure 7.2) describes
from accounting for Invoices and Payme
Customers. The system itself is seen as c
This is a level 1 diagram and it identifie

Figu

A level 2 diagram will show the subleve
problem any further as it is the context d
you on this course. For more understand

Example 2
In this example we are considering an or
system.

Order processing

Invoices

Post
payments

Order processing

Payments

Payment details
 Sales Ledger
 System
re 7.1: Context Diagram

 the Sales Ledger System in more detail, showing that apart
nts, a very important function is sending Statements to
onsisting primarily of three processes and one data store.
s the individual processes.

re 7.2: Process Diagram

ls of each of the processes. We will not take the above
iagram and the level 1 diagram that are of most interest to
ing, we will consider another example.

dering system, and in particular entering an order into a

Payments

customer

Post
 invoices

Produce
statements

customer

Invoice details

Sales Ledger Account info.

Statements

122 Data Flow Diagrams

Figure 7.3: A

At level 0 there is only one process, which i
process is expanded at level 1 (figure 7.4) to

Figure

Next, we will develop the level 2 DFD for t

The following DFD is the level 2 expansion
DFD showing the individual processes invo
straightforward, as the stock availability mu
owed must be taken into account and rebille
sub-processes of the ‘Produce order’ level 1
interaction of this process and the complete

Customer
Management

Accounts
department

Credit rating
Prices

Order
Invoice

Daily summaries

Picking list

Upd
sto
fil

check
stock
available

Customer

pro
pic

produce
order

accepted orders file

Stock file
Stock details

stock price
stock
quantity

invoice

orders

orders wi
available

order details warehouse details

accepted orders

Com
Order
entry
system
© Licensed to ABE

 context or level 0 diagram.

s the actual system being modelled (figure 7.3). This
 show the component processes of the system:

7.4: Level 1 Diagram

he ‘Produce Order’ process.

 of the ‘Produce order’ process from the previous level 1
lved within. As you will see, raising an order is not
st be continually checked. Also, any outstanding amounts
d for. The outer box identifies those processes that are
 process. Everything outside of the outer box clarifies the
DFD model.

Warehouse

ate
ck
e

Produce daily
summary

Warehouse Management

duce
king list

price
orders
and check
credit rating

Accounts
department

s

stock despatched
and received

Prices

picking list Daily Summary

credit rating
th
stock

pleted orders

refused orders

refused orders
details

Data Flow Diagrams 123

© Licensed to ABE

Figure 7.5: Level 2 Diagram

D. DRAWING DATA FLOW DIAGRAMS

The important point to bear in mind is that we are still at the analysis stage of the system development
and so are solely concerned with WHAT we require of the system. HOW this will be achieved is left
until the next stage of the development, the design stage.

1. Start by identifying all the source and destination entities of the system to be modelled. This is
unlikely to be the total system under development as it is normally necessary to partition the
whole development into manageable parts which can then be separately developed. (See Step 7
below). It is one of these parts that the DFD will represent. As we have seen in our definition of
a system, the sources and destinations are not part of the system as the system is what happens as
the information flows from the sources to the destinations. The nouns and noun phrases in the
scenario description give a useful guide and identify the entities and the data stores.

Figure 7.6

Raise order

Hold orders if
stock not
available

Check stock
availability

Update
customer credit

Send invoice

Produce Order

Order details

Order detailsOrder costing

Outstanding credit

Invoice

Customer

Order

Order
with stock
availableOrder

with no
stock
available

Hold order file

Held orders
Freed orders

accepted orders file

Stock file

Stock
quantity

Stock
requirement

The system
being modelled

Source Destination

Input Output

124 Data Flow Diagrams

© Licensed to ABE

2. In the style of the above standardised DFD, draw the appropriate context, or level 1, diagram.

3. Refine the context diagram by identifying all the processes within the main system process whilst
at the same time maintaining all the input and output flows given in the context diagram. Again
the verbs in the scenario description tend to define the processes.

4. Once all the processes are identified, begin at a source and decide which process is to receive that
input. Then decide where the output of that process is to go. By repeating this exercise for all the
input and output processes, a full data flow chain is produced, and this is the level 1 DFD.

5. Once step 4 is completed, take each process in turn, and repeat step 4 for each of these, drawing a
separate diagram for each. These are the level 2 DFDs.

6. In summary, there will be one context diagram and one level 1 diagram for each of the partitioned
parts of the whole development project. There will be several level 2 diagrams for each of these
partitioned parts.

7. A good rule is to keep the number of processes in any one diagram to no more than seven. This is
the reason for the original partitioning and the identification of the level 1 processes.

8. Never connect a source directly with a destination

General Rules
• Within the scenario description, only the essential words and phrases need to be modelled.

Synonyms should always be rejected.

• Words like ‘detect’, ‘use’, ‘accept’, ‘retrieve’ imply input.

• Words like ‘written to’, ‘display’, ‘print’, ‘operate on’, ‘update’ and such like imply output.

• The user and the computer media used are not modelled as these are beyond the sources and
destinations.

• In the context diagram, work left to right with input to output.

• At levels 1 and 2, ensure there is a balance in the data flows. This generally means that there
should be appropriate input to a process before there can be a required output. In our Example 2,
level 1 DFD, the process ‘Update stock file’ has an input of stock receives and used which is then
processed and sent onto the file as formatted details. On the other hand, this does not mean that
every output must have a corresponding input. Sometimes more than one output is produced,
sometimes more than one input is required to give the output. And the inputs and outputs from
the context diagram are just used as presented.

E. ADVANTAGES AND DISADVANTAGES OF DFDS
Advantages

• DFDs are used to specify the functions of a system..

• They highlight the data flows through a system.

• They also identify the components of a system.

• It has very simple notation.

• It is easy to learn.

• The nouns and verbs of the system description translate directly into the diagram.

Data Flow Diagrams 125

© Licensed to ABE

Disadvantages

• DFDs soon become cluttered with too much detail.

• They can be difficult to read if not clearly set out.

• They can be difficult to correct or maintain without redrawing the whole diagram. The normal
way is to use complementary DFDs. These are ‘second editions’ of the original.

• There are no control elements in the diagrams such as ‘does a process use all its inputs?’

• The notation is not standardised and so must be defined separately each time.

F. WORKED EXAMPLES

(Attempt the exercise then refer to the answer which follows)

The task is to draw a context diagram and level 1 DFD for tuition part of our college example. The
scenario is that students enrol for a course and this information is held on file. The student receives
tuition and is examined for each course. The tuition and exam are given and set by the college staff.

Suggested Answer
The following are just suggested answers for these two diagrams. Your answer may look different but
be quite correct. The important points are the entities and the processes, not the actual names used.

Figure 7.7: Context Diagram

The exercise scenario has the nouns ‘student’, ‘course’ and ‘staff’. As the courses are totally within
the system, they have not been identified as external entities. The verbs in the scenario suggest
‘enrol’, ‘tutor’ and ‘examine’ data flows.

Figure 7.8: Level 1 DFD

Course
tuition

Student Staff

Enrol Tutor & examine

Enrol

Examine

Student

Staff

CourseStudent details

Student details

Student details

Student file Exam result

Course taken

Enrolment details

Subject information

126 Data Flow Diagrams

© Licensed to ABE

From the context diagram (figure 7.7), Student and Staff are source entities and Staff is also a
destination entity.

Enrol and Examine are the two processes identified. Enrol passes the student details to the internal
Course entity, the enrolment details to Staff entity and the student details to the student file. The
student file store holds student details, including the courses they have taken and the exam results
obtained.

127

© Licensed to ABE

Study Unit 8

Data Modelling

Contents Page

Introduction 128

A. Entity-Relationship Models (Or Logical Data Structures) 128
Cautionary Points 130

B. Worked Example 131
Scenario 131
Suggested Answer 131

C. Data Dictionaries 133
Description 133

D. Case Tools 135
What Is Prototyping? 135

E. Normalisation 136

F. Fitting The Techniques Together 138

128 Data Modelling

© Licensed to ABE

INTRODUCTION
In this Study Unit, you will be studying:-

1. Entity modelling which is a form of data modelling where we examine a scenario and
decompose it into a formal structured diagram. This is then used as the base document for the
design process that follows. At this point, with the DFDs and the entity-relationship models, we
can understand the existing situation and what is required in the new system.

2. The use of a data dictionary as a computerised modelling tool. Modelling was originally a paper
and pencil exercise, and still is in many cases. But nowadays there are a variety of computerised
tools available, of which the data dictionary is one.

As you will recollect from the previous Study Unit, SSADM methodology makes extensive use of
DFDs and entity-relationship models.

A. ENTITY-RELATIONSHIP MODELS (OR LOGICAL DATA
STRUCTURES)

Entity-relationship (E-R)modelling follows the production of DFDs and the models act as the bridge
from the analysis stage to the design stage of the development. They define the data that is held by
the system and they should reflect the real world situation of the business. The E-R model defines the
way in which data entities are related and we should clarify what is meant by ‘entities’.

In DFD models, entities are the sources and destinations of the data. In E-R models, entities are
simply concrete aspects of the real world. So there is a little bit of difference in definition between the
two modelling techniques. On the other hand, the similarity lies in the fact that entities are the nouns
of the scenario.

As we stated in the previous study unit, SSADM separates the way in which items are physically
stored on file from the way in which we view them logically in our models. The logical view of the
situation is depicted in the entity-relationship model. This model evolves by taking a top-down view
of the situation and identifying items and the relationships between them.

! The items are known as entities and are things of the system that we wish to collect and store
data about.

! The entities are described by attributes or data items. These are similar to adjectives. For
example, a car entity can be described, and has attributes such as, the colour red, an engine
sizeof 1500, a saloon type, automatic for its gear system, and so on. We model entities as
rectangles.

! Relationships between entities are expressed in the verbs of the scenario. For example, in the
scenario ‘the driver drives the car’, there are two entities, ‘driver’ and ‘car’. A relationship
between these entities ‘drives’. We model relationships as lines between entities.

Figure 8.1 shows a simple entity-relationship model of this same scenario: -

Figure 8.1

Driver Car
Drives

Data Modelling 129

© Licensed

This model tells us more than the short scenario. The ‘crows feet’ at one end of the relationship
means ‘many’. The lack of a ‘crows feet’ at the other end means ‘one’. Therefore, the model can be
read as: -

We read the

Other variati
A driver drives many cars.

A car is driven by one driver

This is called a 1 to many, or 1:M degree relationship, where
M = many.
to A

relationship in both directions.

ons are possible, depending on the actual scenario (see figures 8.2, 8.3 and 8.4).

Figure 8.2

Figure 8.3

Driver CarDrives

Driver CarDrives
A driver drives many cars.

A car is driven by many drivers.

This is called a many to many, or M: M degree.
A driver drives one car.

A car is driven by many drivers

This is called a many to 1, but, as before, it is still has
1:M degree.
Figure 8.4

Driver Car
Drives
A driver drives one car.

A car is driven by one driver.

This is called a 1 to 1 or 1: 1 degree.
BE

130 Data Modelling

© Licensed to ABE

We also need to note that ‘one’ = 0 or 1, and ‘many’ = 0,1 or many. In other words, the one’ and the
‘many’ are maximum values.

The E-R model diagrams do not include the attributes. These are held separately as a list. An
attribute list for the above models could be: -

• Driver : Name, Address, Age, Experience

• Car : Manufacturer, Car Model, Colour, Engine size, Mileage covered

In each case, one of the attributes is in bold, showing that it has a unique value and can be used to
help identify a particular record. These attributes are known as the identifier attributes.

An E-R model consists of both the E-R diagram and the attribute list.

Cautionary Points
1. We have already referred to entities and relationships. However, we must keep in mind that when

we draw a ‘Car’ entity, this is representative of ALL cars. The proper name is therefore a ‘Car’
entity type. It does not stipulate any specific car. A specific car would be an occurrence of the
‘Car’ entity.

2. When drawing E-R diagrams, we use 1:1 degree relationships with caution as very often, one of
the entities is simply an attribute of the other.

For example, we can consider the following E-R diagram (figure 8.5).

Figure 8.5

With attribute lists:

Student : Name, Address, Course-Taken, Age

Registration-Number : Value

(As an extra point, ‘Student’ entity has a composite of identifier attributes as neither Name nor
address on their own will be unique and so cannot uniquely identify a Student entity, but taken
together, they will be unique in all but exceptional cases.

Now, returning to our cautionary point, we know very little about the registration-Number other
than it has a value. There are no other attributes in the attribute list. We also note that the
relationship called Has-A is 1: 1 degree. This just means there is a one-to-one correspondence
between the entities. Putting these two points together we can draw the E-R diagram more
succinctly as: -

Student: Name, Address, Course-Taken, Age, Registration-Number

3. We do not like M:M degree relationships. These will arise during our modelling exercise, but
they are not very helpful as all they tell us is that many of one entity is related to many of another.
In other words, it is not possible to pin down which entity occurrence is being related to. We will
always remove an M:M relationship using the following technique. Suppose we have the
following:

Student

Student Registration
number

Has a

Data Modelling 131

© Licensed to ABE

Step 1: Create a third entity box and give it a suitable name.

Step 2: Draw two new relationships from the original entities to the new entity and make both
with 1:M degree towards the new entity and give both suitable names.

So now we can say, each Car-Driver is one Driver and drives one Car.

Step 3: Set out the identifying attributes of the new entity as a composite of the original
identifying attributes. Suppose:

• Driver entity has Identifier ‘Name’ and

• Car has Identifier ‘registration-Number’, then

• Car-Driver can have Identifier ‘Name, Registration-Number’.

B. WORKED EXAMPLE

Scenario
A bus company has several buses and drivers. It has one garage and covers several routes. At any one
time, some buses will be on routes whilst others are garaged. Individual buses are used on any route
and drivers are allocated to any bus. Each route has only one bus travelling on it at any one time.
Passengers may have to take more than one bus on a journey.

This exercise aims to identify the principal information needed by the bus company to maximise
efficiency.

Suggested Answer
The first task is to identify the entities in the given description. These are:

bus, driver, garage, route, passenger.

For each, give and justify their attributes:

(a) Bus will have some kind of identifying number, either registration number or a company
number. Its capacity is important in this context and whether it is in the garage or in use.

Driver Car

Car-Driver

Driver CarDrives

Driver Car

Car-Driver

DrivesIs-A

132 Data Modelling

(b) Driver will have a unique company number as his or her name may not be unique. However,
the name is also required and which route he or she is allocated to.

(c) Garage will, like all entities require an identifier of some kind and I suggest its name. Other
possibilities might be its address or even the company name, etc. The address is needed in
some form.

(d) Route will probably have a unique identifying number and, from the efficiency point of view,
how long it takes to drive round it. The average number of passengers carried might also be
relevant.

(e) Passenger can only be identified by name and address as unique numbers are not practical. The
normal route used could also be relevant.

These entities can now be given formally:

Bus Number, Capacity, In/Out-use
Driver Driver number, Name, Allocated-route
Garage Name, Location
Route Route-number, Time-to-drive-round
Passenger Passenger-name, Address, Usual-route

This question also calls for relationships:

! A bus can be driven by different drivers, and a driver is allocated different buses.

! A bus can be kept in the garage, which may have several buses parked there.

! A bus can travel on several routes, but each route can be covered by only one bus at a time.

! Drivers are allocated to any route, although the route can have only one driver allocated to it as
there is only one bus.

! Passengers travel on several buses, each of which, of course, has several passengers.

An entity-relationship diagram will display them formally (see figure 8.6):

s

Tr

Kept-
Passenger
avels-On

Drive

Bu
Figure 8.6

e

At Travel
Driver
Allocated
Garag
 Route
© Licensed to ABE

Data Modelling 133

© Licensed to ABE

This first attempt at the E-R diagram (figure 8.6) is fine except that we have two M:M degree
relationships. We do not like these and so will break them down as previously. However, before
doing this it is worth re-examining the relationship called “drive”. As this can be deduced from the
fact that a bus can travel on many routes each of which is effectively allocated a driver, we can say it
is redundant. Not only are many drivers involved, a driver may also be allocated to any of several
routes, each of which is travelled by a bus. Hence many buses are involved. These two relationships
tell us the same information as the “drive” relationship. So we can eliminate this relationship entirely.
This means the ‘Travels-On’ relationship can be broken up as before. This then is the E-R diagram
(figure 8.7).

Figure 8.7

The other part of the E-R model is the attribute list: -

Bus Number, Capacity, In/Out-use
Driver Driver-number, Name, Allocated-route
Garage Name, Location
Route Route-number, Time-to-drive-round
Passenger Passenger-name, Address, Usual-route

Together, the diagram and the attribute list are the E-R model.

C. DATA DICTIONARIES

Description
A data dictionary is a specialised form of database. Whereas a normal database is a repository of all
the data that is related to an organisation and its activities, a data dictionary is specialised in that it
contains everything about the data being held in the database and so provides an extremely useful
reference store for developers. So we have a database containing all the data, and running alongside
is the data dictionary with everything about that data (see figure 8.8).

Passenger

Bus Driver

Garage Route

Bus-Passenger

Travels-On

Kept-At Travel Allocated

Is-A

134 Data Modelling

© Licensed to ABE

Figure 8.8

The data dictionary contains detailed descriptions of all the files, their indexes, the data structures
used, the users, the analysis results including data flow diagrams information and entity-relationship
definitions. This is not an exhaustive list but it will give some idea of the range of information held
by the data dictionary.

Because everything about the information that flows through the company is held by the data
dictionary, it makes it an ideal tool when analysing a new system. It will reveal considerable
information about the existing system, and together with the data flow diagram technique, a full
analysis of any of the company’s systems is possible.

Each data item will include:

(a) A definition of the item.

(b) Its relationship to other items

(c) The programs which use it.

(d) Different names which may be used for the same item, e.g. “part number” and “product code”
could refer to the same part or product.

(e) How it is validated, e.g. “numeric in a given range”, “alphanumeric, 6 characters long”. If all
applications use the data dictionary, then all data items input will be validated in the same way.

The data dictionary will also hold information on the programs that use the data, including how often
they are run, which peripherals they use, etc. The data dictionary also holds all the definitions of user
views and physical definitions of how the data is stored and where, in fact everything about
everything in the information environment.

The particular way in which the data dictionary helps during analysis is by providing a reference point
for: -

! All the definitions created by the DBMS

! The physical characteristics of the data

! How the database is used and by whom

! The standards for using the system

! The data flow diagrams and other diagrams and reports prepared during development

! The authorisations for using the database system, and so on

! The data requirements of the system to be developed

! The details of the relationships between data items, records, files and so on

! Providing support for software modelling tools

The data dictionary is updated automatically. This is an important aspect as the developers will rely
on the data dictionary’s consistency and that it is up-to-date. It is liked directly with the main

Database which
is a store of all
the company’s
data.

Data Dictionary
which is a store
of everything
about that data

Data Modelling 135

© Licensed to ABE

database, and every time the database is accessed, a record is kept of that access and any changes that
are made to the database system are recorded immediately in the data dictionary.

The last point is worth dwelling upon as the data dictionary is at its most useful when supporting
software tools.

D. CASE TOOLS

Professionals use the data dictionary during maintenance activities and during development. Should
some work be needed on the database system, the maintenance staff will look up what the existing
definitions are and what previous work has been done. At development times, CASE software tools
are used and the tool will access the data dictionary for existing definitions and design specifications.

A CASE tool is special software designed for drawing diagrams, writing reports on the process
specifications and is another source for maintaining the data dictionary. It maintains the data flow
diagrams and their labelling such that a change made in one place is automatically revised elsewhere.
Developers can use CASE tools in two broad ways:

! to help with analysis and design, and,

! to help with the construction of systems.

Both ways make use of the CASE repository. This is a data dictionary store of all the data definitions
and other artefacts arising through this and other development processes. The repository is
fundamental to the concept of CASE as it gives reuse of all aspects of the development process.

! During analysis and design, CASE gives a tool for the production of data flow models and,
Entity-relationship models. This is a big help to developers as it save so much time.

! During the construction of the system, a CASE tool uses an application generator software
tool to produce the actual code. This can be a very tedious task otherwise, and so again time is
saved.

! Finally, the CASE tool will contain a Project Management tool that is useful for displaying the
progress of the project, verifying its consistency and for documenting it.

When started, the CASE tool produces a graphical screen window interface surrounded by various
GUIs and menus. An existing data flow diagram file can be opened within the screen window and
then by clicking on the menus and GUIs as appropriate, changes to the data flow diagram are easily
made. Once stored, these changes are replicated in all the other relevant places within the data
dictionary repository. In this way, there is no need to repeat the exercise and so maintaining both
consistency and saving time.

Yet another CASE tool facility is the provision of a prototyping facility. This is a fast, user-
orientated development technique.

What is Prototyping?
Prototyping is a preliminary working model of an application developed by users using a CASE tool.
Its strength is that it requires users to give an unambiguous definition as to what is required by them.
A prototype pays particular attention to screen and report layouts, and the primary systems functions.
Once modified by a professional developer, the prototype evolves into a fully implemented version of
the required system.

136 Data Modelling

© Licensed to ABE

The prototyping technique involves siting the user in front of a screen and then with assistance from
the developer and with the use of a CASE tool, the user works out a screen interface that they are
happy with.

Prototyping has many advantages:

! Most of all, it satisfies users, as they are fully involved.

! It is quicker and has only essential documentation. Training occurs during the prototyping
sessions.

! It produces a working solution.

! It eases communication problems between users and development staff.

However there are also disadvantages:

! They are difficult to handle at first because of a lack of control during prototyping sessions and
the probable lack of reasonable prior planning.

! It is difficult to prototype large systems because of their complexity.

! Users usually want to use the prototype immediately without the essential background support
work.

E. NORMALISATION

Another use of CASE tools is in the technique of normalisation. This technique is also known as
relational data analysis (RDA). It is a complementary technique in model building to the entity-
relationship approach. Whereas entity-relationship is a top-down approach, normalisation is a
bottom-up approach. Taking both approaches to model building will clearly identify all the
relationships between entities.

The biggest problem when storing data is duplication. Duplicate copies of data are not only wasteful
of storage and inefficient in searches, they also introduce inconsistency if only some of the copies are
updated. For example, should your personal details be kept by a company on traditional flat files, it is
likely that your address occurs in more than one place. This is the case in the following table of
records.

Table 8.1

Item bought Name Address

computer John 123 The Street, London

book Peter 67 The Road, Bristol

printer John 123 The Street, London

software Peter 67 The Road, Bristol

The addresses of John and Peter are held in duplicate, and possibly elsewhere as well. Should Peter
move address, then perhaps only the ‘book’ record will be updated with the new address so that there
is then two different addresses for Peter held.

The answer to this problem is to structure the files to remove unnecessary duplications and to only
allow duplication where it is known about and where it is necessary for a specific purpose. This is
achieved using the normalisation technique.

Data Modelling 137

© Licensed to ABE

We can best demonstrate the technique using an example.

Suppose the details of a student seminar are recorded on a form as in table 8.2.

Table 8.2

Seminar-Id Student-Id Date Type Room Book Score

DB1 X123 2-5-01 Database 2 Green 55
DB2 X123 8-6-01 Database 4 Green 65
DB2 Y345 8-6-01 Database 4 Green 50
C1 W567 2-5-01 C++ 3 Black 80

Table 8.2 gives us the unnormalised list:

Seminar:

Seminar-Id, Student-Id, Date, Type, Room, Book, Score

We will designate the first two attributes as the unique, identifying key and identify it in bold print.

Normalisation follows a series of steps moving from First Normal Form to Second normal Form, and
so on. We will take our example as far as Third Normal Form. As we move from step to step a
different rule is applied in each case: -

! First Normal Form - the rule is “ensure all the attributes depend on the Identifier.”.

By examining data values, we can say that all the attributes depend upon at least one of the identifying
attributes. For example, Date depends on Seminar-Id, as does Room, Type and Book. On the other
hand, Score depends upon the composite identifier. Therefore we can say the list is in First Normal
Form.

! Second Normal Form - this time, the rule is “ensure every attribute depends on the whole
identifier.”

In our work on First Normal Form, we noted that Score depended on the whole composite identifier,
but none of the other attributes did. They only depended on Seminar-Id.

We will separate these by writing two attribute lists each containing full dependency. We now have
two relations: -

Seminar – Seminar-Id, Room, Book, Date, Type
Stud-Seminar - Seminar-Id, Student-Id, Score

Our example is now in Second normal Form.

! Third Normal Form - this time the rule is “separate off any non-identifying attributes
dependent on other non-identifying values”.

As Stud-Seminar has only one non-key value it is already in third normal form.

However, from the table we can see that Book depends on the Type. We will therefore remove Book
from the Seminar list and make a new list called Type and showing this newly identified dependency.
This gives: -

Type

Type, Book

138 Data Modelling

© Licensed to ABE

Seminar

Seminar-Id, Room, Date, Type

Stud- Seminar

Seminar-Id, Student-Id, Score

Using the third normal form we can now construct a new set of tables equivalent to the original but
which is unambiguous, flexible and easy to use on a shared basis.

Table 8.3: SEMINAR

Seminar-Id Room Date Type
DB1 2 2-5-01 Database
DB2 4 8-6-01 Database
C1 3 2-5-01 C++

Table 8.4: STUD-SEMINAR

Seminar-Id Student Score
DB1 X123 55
DB2 X123 65
DB2 Y345 50
C1 W567 80

Table 8.5: TYPE

Type Book
Database Green
C++ Black

We can then build the entity-relationship diagram from the Third normal Form.

! We note that Seminar-Id is the identifier of table 8.3, but only part of the identifier of table 8.4.
There is therefore a one-to-many relationship between these tables.

! Also, Type is the identifier of table 8.5, but is not the identifier in table 8.3. There is therefore a
one-to-many relationship between these tables.

Figure 8.9

F. FITTING THE TECHNIQUES TOGETHER

We have studied a range of development techniques; -

! Data Flow diagrams

SEMINAR

STUD-SEMINAR TYPE

Data Modelling 139

© Licensed to ABE

! Entity-relationship models

! Data Dictionaries and CASE tools

! Normalisation

So all that remains is to see how they all fit together into the development process.

1. The Data Flow Diagrams highlight the flow of information through the system being studied.
They help the developer see exactly what is happening.

2. The Entity–Relationship model helps to identify the detailed structure of the data collected during
analysis.

3. Normalisation complements the entity-relationship model by approaching the same task from a
different perspective. Together they show they true structure of the data.

4. The Data Dictionary is a repository of everything about the data within the system and so, using a
CASE tool, this repository can be used as a computerised tool to help the developer with each of
the first three items above.

140 Data Modelling

© Licensed to ABE

141

© Licensed to ABE

Study Unit 9

Entity Life Histories (ELH)

Contents Page

INTRODUCTION 142

A. ELH Notation 142
Events 142
Effects 142
Notation 142
Sequence 142
Selection 143
Iteration 144
Some rules 144
Parallel Structures 144
Quit and Resume 145
State Indicators 146

B. Interrelationship Between The DFD, Entity-Relationship Model
 And The ELH. 148

C. Worked Example 148
Suggested Answer 149

142 Entity Life Histories (ELH)

© Licensed to ABE

INTRODUCTION
In the previous study unit, we looked at entities and when they occurred. You will remember that
whilst ‘Car’ is an entity type, any specific car is an occurrence of the entity. Suppose this is your own
specific car. During the lifetime of the entity occurrence, you will buy several different cars, updating
the occurrence each time. If at some stage you decide not to own a car, you will no longer be
interested in the ‘Car’ entity. What we can note from this is that the entity occurrence has its own
history. Your car occurrence history will be very similar to all the other car occurrence histories.
There will be a common pattern.

An Entity Life History (ELH) diagram is a diagram that attempts to map the possible life of each
occurrence from creation to deletion.

Compiling ELHs is quite a difficult exercise as there is so much to consider. It is however, a very
powerful technique that takes the developer from the analysis stage towards the design stage.

A. ELH NOTATION

Events
During the lifetime of each system, happenings take place in the outside world that can affect the
system’s entities by changing them. The happenings taking place outside the system that in some way
excite that system’s data are known in SSADM as events. By definition, only events can cause a
change of the system’s data.

Effects
An event may affect attributes of more than one entity. The particular set of changes caused within an
entity by an event is called an effect.

Notation
The drawing of ELHs takes place when the requirements specification is almost complete and when
all the entities of the system have been identified and the DFD has provided most of the events which
affect these entities.

ELH notation is based on the main ‘structured’ principle that states that any programming activity can
be described using only the three basic constructs of sequence, selection and iteration.

An ELH consists of a set of connected boxes. A single box containing the name of the entity is placed
at the top. Each box may have other boxes hanging beneath it. A box that has no other boxes beneath
it constitutes a ‘leaf or ‘element’. Leaves contain the effects that particular events have on the entity.

Sequence
The simplest construction in an ELH is that of sequence, which shows things that are expected to
happen one after the other. The thing that is expected to happen first is positioned to the left, and at the
same height, as the thing that is expected to follow it.

For example, if the team of analysts has decided that three events, A, B, and C, are to affect an entity
in that order, then these events are shown on the ELH (see Figure 9.1).

Entity Life Histories (ELH) 143

© Licensed to ABE

Figure 9.1

The ELH shows that for every occurrence of the named entity, event B can only affect it after event A,
and before event C.

Selection
Often, a choice exists between alternatives that can affect an entity.

This choice is shown on separate ‘branches’ of the structure, each branch containing a box with a little
‘o’ (for option) at the top right.

Consider, for example, the Employee entity of any business. An employee can either be a fully trained
or just a trainee. This means that, from the point of view of the business system, a particular person
will be recorded for the first time as an employee either because they are trained or because they are
trainees. Therefore, two different events give rise to an Employee occurrence. One is the ‘New Staff
Recruited’ event and the other is ‘New Trainee Accepted’ event. This choice is shown in figure 9.2.

Figure 9.2

To read the diagram, we start from the left-most box hanging under the entity name (named ‘new
employee’). From that box we move down to exhaust all the possibilities of the events that hang
under it, following the same rules at each level. When we finish with this branch we move to the next
branch, as indicated by the uppermost sequence. So, in the example the first thing to happen to an
Employee is the recording of either the recruitment of a new, fully paid, member of staff or the
acceptance of a new trainee. The next thing that can happen to an Employee of this system is the
effect of event D, whatever that is, followed later on by event E. Note how the structure only contains
events at the bottom (i.e. the leaves) of each branch. Also note that, according to the sequencing rule,
event D cannot occur for any employee for whom the ‘New Staff Recruited’ or the ‘New Trainee
Accepted’ event has not preceded it.

Entity Name

Event A Event B Event C

Employee

New
Employee

Event D Event E

New Staff
recruited

New Trainee
Accepted

144 Entity Life Histories (ELH)

Iteration
Events that occur many times for each particular occurrence of an entity are represented on the
diagram with boxes containing an asterisk.

We can now construct a first ELH. Putting tog
the history through to a conclusion, we have fi

F

Some rules
1. All boxes hanging from one node must be

2. All iterations must have a sequence or sele

3. All selections must hang under a structure

Parallel Structures
Sometimes, an event occurs that does not chan
concerned, of an entity occurrence. For instanc
during their employment. This event has no ef
address of the employee is now on record. Thi
any predictable sequence or even while other e
these situations by introducing a parallel struct
the exception to the right (see figure 9.4).

F

P

New
Employee

New Staff
recruited

New Trainee
Accepted

Empl

Work

Norm

Salar
ayment *
© Licensed to ABE

ether the first two diagrams already drawn, and taking
gure 9.3.

igure 9.3

of the same type.

ction box immediately above them.

 box.

ge the status, as far as the system being considered is
e, employees can change their address at any moment

fect on the business apart from the fact that the new
s type of ‘uneventful’ event typically occurs without
vents are occurring. The ELH notation accommodates
ure, depicted on the diagram with a parallel bar, placing

igure 9.4

Employee

Working life
of employee

Working life
ends

Salary paid * resigns fired

oyee

ing life

al life

y paid *

Address changed

Entity Life Histories (ELH) 145

© Licensed to ABE

Quit and Resume
Sometimes extraordinary events occur and disrupt the expected life pattern of an entity. Attempts to
anticipate those events on an ELH may lead to a complicated diagram that obscures the normal entity
life. To avoid this tangle, Quits and Resumes are used on the diagram to leap from one event to
another.

For example, suppose we return to our employee. Part of an employee’s life involves receiving
‘salary payments’, attending to ‘new appointments’ and ‘going for training’.

Now, suppose that while on training, an employee cannot be assigned to a new appointment nor can
they receive their salary. This rule leads to the identification of the ‘return from training’ event which
then has to be placed in a sequence after the ‘go to training’ event so as to enforce it.

Figure 9.5

Suppose now that an employee who has gone for training decides not to come back. This means that
the employee has either resigned or is fired. In other words, the system has to be able to jump to the
events at the ‘end of working life’ node instead of having to go through ‘return from training’.

The quit and resume mechanism allows the system to anticipate this situation by providing for ‘two’
lives, the ‘normal’ and the ‘alternative’. These two lives are each placed on a branch of a new option,
as shown in figure 9.6. The event which can be jumped over, in this case ‘return from training’, is
marked with a ‘Q’, while the events on the point of resumption are marked with a ‘R’. Since many
quits and resumes may be present on the same ELH, the Q’s and R’s are followed by a number that
indicates which R’s correspond to which Q’s.

Additionally, purely so that the alternative structure is more clearly visible to the human eye, it is
suggested (in the official manual) that a box with the words ‘start of alternative case’ under which an
iteration box with the word ‘event’ are placed on the structure. These conventions are shown in
figure 9.6.

Working life Address changed

Salary paid *New appointment Training

Go to training Return from training

146 Entity Life Histories (ELH)

© Licensed to ABE

Figure 9.6

Occasionally, an extraordinary event may occur which suspends the normal life of an entity in such a
way that it calls for a leap to a totally new event box placed at the foot of the diagram. Consider that
employees may be drafted into the army where they have to serve for, say, six months. During that
period nothing really happens as far as the business is concerned and everything concerning the
employee is suspended awaiting their return. We could show the existence of such an ‘employee
drafted’ event by placing a suspended event box somewhere in the vicinity of the ELH. Q’s and R’s
could then be used to show that this event is another legitimate eventuality in the life of an employee.

Quits and resumes have to be used with great caution. Over-use leads to bad programs and the
reappearance of ‘spaghetti’ codes. The main rule governing Quits and Resumes is that the event
containing the Q may be replaced by the event containing the R.

Convention stipulates the use of a ‘selection’ whenever Quits and Resumes appear. So it soon
becomes clear that Quits and Resumes can only be used to jump from one side of a selection to
another or from an iteration into the main structure or towards an off-the-structure ‘random’ event.

State Indicators
Entity Life Histories follow the effect that time has on every occurrence of an entity. This means that
it should be possible to know, for each entity occurrence, which event was the last one to affect it.

This information is important because it can be used to create a design which will not permit certain
events to affect an entity occurrence if certain other events, as dictated by the business’ rules, have not
taken place. For example, the event of paying for an invoice should never be allowed to take place

Working life Address changed

Salary paid * Training

Go to training Return from training
Q1

Employee

Main life

Normal case

Employment period

Resigns * Fired *

Work ends

Alternative case

Resigns
R1

Fired
R1

Start of
alternative

Fired in
training

Entity Life Histories (ELH) 147

© Licensed to ABE

before the event that shows that the invoiced goods have been delivered by the supplier and accepted
by the business.

State indicators (SIs) are the ‘markers’ placed on each entity occurrence to indicate the last event that
affected it.

State indicators are numbers allocated to an entity whenever an event affects it. The value of the SI
set by an event is shown on the right hand side of a slash placed on the ELH just under the event
itself. The values of the SIs of all the events that are allowed to precede a specific event are placed on
the left of each of these slashes (figure 9.7).

Each birth event has no previous valid SI, so a - is placed on the left of the slash. Similarly, an event
that leads to the deletion of an occurrence of an entity does not set the SI to anything, so a - is placed
on the right of the slash. A random event, as seen under a parallel life, does not set a SI value and so a
* is placed on the right of the slash.

The placement of SIs on an ELH is fairly straightforward. Each event sets the SI to one value. It is
natural to start with I for a birth event and then proceed until the last event.

! In a sequence, the SI set by the box on the left is the ‘valid previous’ value of the box to its
right.

! Selection elements hanging under the same node should all have identical ‘valid previous’ SIs.

! Since an iteration means that the indicated event can occur after itself again, the ‘valid
previous’ of an iterated event should include the ‘set to’ value of that same event.

! Since, in common with all computing conventions, an iteration is allowed to happen, the event
following an iteration should contain in its ‘valid previous’ values the SIs set by the events
immediately preceding the iteration.

! Quits and Resumes force the ‘valid previous’ SI for the resume event to include the ‘valid
previous’ values of the event it is replacing (i.e. the event that contains the corresponding Q).

Figure 9.7

State indicators are a device to stop an event occurring if the business rules do not allow it. We
therefore see that SIs can be used as blocking mechanisms.

Entity name

Event C

Event A Event B

1,2/3

-/2-/1

148 Entity Life Histories (ELH)

© Licensed to ABE

B. INTERRELATIONSHIP BETWEEN THE DFD, ENTITY-
RELATIONSHIP MODEL AND THE ELH.

The Data Flow Model, the Entity-relationship Model and the Entity Life Histories are three views of
one and the same system. They are related since: -

! The data of the system which constitutes the entity-relationship model is the data contained in
the data stores of the DFD.

! The data coming in from an external entity of the DFD represents an event, since this data is
trying to enter, and thus affect, the system.

! The entities for which an ELH is drawn are the very entities of the entity-relationship model.

SSADM uses techniques in a well prescribed sequence. Among these techniques, Data Flow
Diagrams, Entity-relationship Modelling and Entity Life Histories used to specify the requirements of
the system under development. Each one of these techniques relies heavily on a diagram which
becomes, in effect, a pictorial description of what the model is trying to represent. Each diagram
consists of not more than four main symbols appropriately intertwined.

! The Data Flow Diagram represents the flow of information within a system. It consists of:
external entities (source/recipient); data flows; processes; data stores. While the diagram is very
powerful, there still is need for some documentation that will avoid any possible ambiguities in
the interpretation of the diagram.

! The Entity relationship Model describes the information actually held by the system and its
interrelationships. It consists of entities and relationships. Every entity consists of a specific list
of attributes that define it.

! Entity Life Histories model the effect of time on each entity. They are based on structured
notation that allows constructs for Sequence, Selection and Repetition.

C. WORKED EXAMPLE

Draw an ELH for the following description:

A delegate can be booked on a course. If the delegate has been to the training centre before, then their
records will be held on file, otherwise their personal details must be taken. The booking can be either
provisional or firm. Once the booking is firm a deposit is taken, the delegate then attends the course
and an invoice is sent out to their company. If the company has not paid the bill after 30 days a
second invoice is sent. If the company do not pay after 3 months the debt is referred to the training
centres solicitor.

Points to remember:

! The Entity Life History that is being modelled is ‘Delegate’.

! At a high level there are a sequence of activities: Take Details, Attend, Remove Details.

! A delegate’s details are only taken once, similarly they are only removed once.

! A delegate can attend many courses.

! A booking can be Provisional or Firm.

! Once a booking is firm a sequence of activities takes place: Take Deposit, Attend Course, Send
Invoice.

Entity Life Histories (ELH) 149

© Licensed to ABE

! After the invoice has been sent a series of subsequent activities may occur.

Suggested Answer
This answer uses a small circle in the top right hand corner to indicate alternative events.

Figure 9.8

Take deposit Attend course Invoice

 0
Paid < 30
days

 0
Not paid
> 30 days

2nd invoice result

 0
Paid

 0
Not paid,
legal action

Delegate

Take details Booking Delete details

Attend *

 0
Provisional

 0
Firm

150 Entity Life Histories (ELH)

© Licensed to ABE

151

© Licensed to ABE

Study Unit 10

Standards and Documentation

Contents Page

Introduction 152

A. The Role and Scope of Standards 152
Development Controls 153
Performance Standards 153
Operating Standards 153
Benefits of Standards 154

B. The Standards Manual 155

C. Other Documentation 156
System Design and Specification 156
Program or Module Documentation 156
Operating Instructions 157
User Documentation 157

D. Using Standard Forms 158

152 Standards and Documentation

© Licensed to ABE

INTRODUCTION

It is perfectly natural to group standards and documentation together. This is because standards are
communicated and enforced through the documentation. To many data processing personnel,
standards mean documentation standards because, in many organisations, these are the only ones in
existence.

Standards are uniform practices which govern the methods by which systems are developed and
operated, and provide a basis for assessing both system and personnel performance in terms of quality
and quantity. They give a clear understanding of what is required to both management and data
processing staff. Standard procedures have to be established for the development and operation of
computer systems, but this is not enough. Once set up and agreed, they must also be enforced. As
new methods of working are introduced, standards have to be updated to suit the new environment –
enforcing out-of-date standards is counter-productive.

Of course, documentation is much more than the communication and enforcement of standards.
Modern system development methods rely upon full and comprehensive documentation. Every step
is fully documented and all through the designs, the coding and the testing, information on each of the
steps is set out in manuals. Subsequently, the auditors, manager and quality assurance people can
check the documentation to obtain information on the steps. After implementation, the documentation
will greatly aid the maintenance staff.

A. THE ROLE AND SCOPE OF STANDARDS

Essentially, a data processing department should have standard procedures laid down for all aspects of
its work, as this is how a quality project management system is maintained. The purpose, content and
usage of each document should be specified in a consistent way.

Methods standards specify an orderly way of working for new systems development and for
maintenance. They may be subdivided into systems, programming and documentation standards.
They will include:

! Control procedures

! Documentation standards

! Development guidelines

! Programming and testing standards

! Maintenance procedures

! Performance standards

! Operating standards.

One of the benefits claimed for structured systems analysis is that it has a defined method of use
which produces a systems methodology standard. Similarly, defined methodologies with regard to
structured programming may form the programming methodology standard.

Documentation standards can run to many volumes. It is an extremely valuable asset to any
organisation to have a set of standards which set out in detail what is required to be documented on
completion of each activity.

Standards and Documentation 153

© Licensed to ABE

All aspects of an IT Department’s work should be standardised, in particular controls on development
projects, expected level of performance and operating methods.

This covers almost everything, including:

! Adherence to the standards adopted by the department;

! The reporting hierarchy;

! The stationery used;

! The salary cycles and all similar aspects.

Development Controls
Project control standards specify the method of planning and controlling the progress and quality of
systems development. They are concerned with the content of the work rather than its method of
execution.

As we have noted structured development imposes its own standard methods, within which the
management must adopt and enforce the use of standard styles of documentation and standard
reporting points (milestones), as well as the requirements of the methodology and programming
language used.

The control of a project has to be keyed to a defined set of activities, to the items of documentation to
be produced during the project, and to other standard methods of working.

Performance Standards
Performance standards set base lines against which actual performance is measured. In this sense,
performance standards are not estimates of how long tasks will take, but are used to specify how long
tasks should take. Their primary use is for comparison with actual performance to pinpoint
deviations that call for investigation and, possibly, action.

Operating Standards
The operating environment is, in many ways, a more difficult function than systems and programming
for management control. Operating standards will need to cover:

! Physical security procedures

! File security procedures

! Work log procedures

! Error log procedures

! Definition of staff responsibilities (probably complete job specifications)

! Data control procedures

! Computer operating procedures.

Each installation must develop its own procedures, but the following is an example of what might be
included in the standards for computer operation:

(a) use of documentation – each system should have an operations manual with a section detailing
machine operation;

(b) control over stationery – both standard and pre-printed;

(c) control over magnetic media – use of write inhibit rings, etc.;

154 Standards and Documentation

© Licensed to ABE

(d) exception procedures – what to do in the case of software or hardware failure;

(e) emergency procedures – details, for example, of automatic fire control equipment.

Benefits of Standards
(a) Saving Time

Elimination of indecision and the consequent economy in time are major benefits of standards.
Good standards reduce the amount of repetitive work and leave more time for the more
challenging aspects of development work – for example, problem analysis.

Suppose a project team is beginning the analysis activity, the major output of which will be the
structured system specification. The standards can immediately answer a whole series of
questions such as:

! What would be in the specification? and

! Who authorises the work?

(b) Management Control

The management of all aspects of the department is greatly assisted by the use of standards.

! All work is carried out to a prescribed quality that can be measured.

! Monitoring of progress of work is easy, since all tasks follow a defined sequence.

! Precise responsibilities can be allocated to staff.

! Estimates of time-scales can be more accurately predicted.

! Schedules of work can be prepared more easily.

! Staffing levels can be determined.

(c) Improved System Design and Development

! Standard procedures provide a checklist to ensure that important aspects of the
development of a system are not ignored.

! Adequate documentation is produced at all stages.

! Standard design methods ensure that similar systems are designed in similar ways, thus
aiding maintenance.

! Programming standards ensure that reliable and well-controlled software is produced,
and that standard problems are solved in a standard way.

! Well-defined maintenance procedures ensure that this expensive aspect of software
development is well controlled.

(d) Computer Operations

The standards in this area ensure that all computer and related operations are carried out
correctly, reliably and fully.

(e) Other Advantages

! Training

When a set of standards is in force, the training of new staff is greatly eased since all
aspects of the work have been defined – the actual content of a training programme is
clear.

Standards and Documentation 155

© Licensed to ABE

! Reduction of Dependence on Individuals

In a data processing department there is a fairly high rate of turnover of staff, especially
in the systems and programming areas. It is essential that the absence of an individual
does not have a catastrophic effect on the work of the department. The adoption of
standards means that it will not be difficult for another member of staff to take over,
since the correct documentation will be present.

! Improved Communication

(i) Standard presentation of information reduces misunderstandings.

(ii) A well-defined set of procedures ensures that all parties who should receive
information will, in practice, actually receive it.

B. THE STANDARDS MANUAL

The most common and perhaps best technique for the presentation of standards is via a standards
manual or series of manuals. This is the “bible” of the department and will include all the aspects we
have mentioned above.

The production of such manuals can be difficult and time-consuming, but it is well worth the effort. It
is important to remember the following points:

! A standards manual is not a once-and-for-all production. It must be constantly reviewed to
ensure that it is up-to-date and in line with experience.

! It is the “spirit” of standards which must be carried out, rather than the letter. It is far more
important that a job is completed well and to a high standard than that the exact standard is
followed. Insistence on “going by the book” defeats the whole object.

It is thus essential that the staff using the standards want to use them and really understand their
value and importance. Education and involvement in the production of standards is a very good
method of ensuring staff co-operation.

! The management of the data processing department must believe in the standards and ensure
that encouragement is given to the staff to follow them.

! The use of standards means that short cuts are never taken in the production of software and the
operation of systems. This has to be appreciated by both user and data processing department.
It will mean the time taken to develop systems will be extended, and this can lead to
misunderstanding by users. Producing quality software takes longer but, once produced, it does
not fail to the same extent. A user has to be convinced that the extra development time will in
fact save time in the long run.

! The role of the standards manual will not be to supersede the computer manufacturer’s
technical literature, such as programming, operating, training, site installation and software
manuals, but to complement such literature with a more personalised document detailing the
particular requirements, policies and practices of the organisation’s DP management. All
manufacturers offer a manual of standards in one form or another, but none of these can be said
to be ideal for everyone’s use.

156 Standards and Documentation

© Licensed to ABE

C. OTHER DOCUMENTATION

As we have seen, a number of areas must be described to specify what a computerised system is to
look like. This includes describing the input methods used, the files held, the output which is to be
produced and the processes by which these relate. This is most frequently achieved by using a
number of standard documents.
This approach has the advantage that all the relevant aspects of the process are recorded; for each file
or screen or form, the person filling in the document is reminded of the questions which have to be
answered.

System Design and Specification
We know that once all the facts are established and recorded to everyone’s agreement and
satisfaction, the next step is the design of a solution to the problem. This will take a number of forms
and, although an optimum solution may appear to exist, it is important for the analyst to draft out a
number of alternative plans.

The job as outlined to the client will be in the broad terms of the layman. The report will include the
diagrammatic representation of the new work flows and procedures, supported by draft samples of all
computer printed output such as reports, summaries, invoices, etc. It will also include an indication of
the main forms of data preparation and input to the computer system.
It is of no interest to the non-data-processing people how disk files, for example, are to be organised,
but such details are of prime importance to the computer programmer, as well as layouts for all input
and output activities. The program specification should include full descriptions of the job being
tackled, together with any necessary calculations or assumptions. Arithmetical requirements would
include the instructions necessary for extreme conditions, the rounding up or down of answers,
conversions of results (such as from metric to imperial units, for example).

Program or Module Documentation
We shall think in terms of the programmer writing and testing a program or module, completing the
project only when it is fully working and when the following documentation has been satisfactorily
prepared. The specification will refer to other areas of the manual of standards for such things as
subroutines usage, file housekeeping requirements, error conditions and end activities.

Different computer installations have various levels of program documentation, but in essence they all
include the following items.

(a) A large part of the program documentation will consist of a copy of the original program
specification, updated as necessary.

(b) There should be actual samples of all printed output as produced by the working program.

(c) The documentation must also include the latest program listing or compilation which, of
course, should be completely free of errors.

(d) Programs should include not only the individual ideas of their creators but also their positive
identities together with the dates, names and details of any subsequent alterations.

(e) Finally, as a permanent reference to the degree of program testing undertaken, the
documentation should include details of test data submitted, along with examples of results
produced.

All these items should be prepared according to the installation’s particular manual of standards. The
acid test as to how well a program is documented is whether an average programmer can take hold of

Standards and Documentation 157

© Licensed to ABE

another’s program and perform amendments and alterations with ease and confidence. If the task is
too great, then either the original program was not written and documented according to the
installation’s standards, or the standards are too loosely written.

Operating Instructions
Operating instructions for an application system should:

(a) Describe the system briefly, most especially the file processing aspects, which are of particular
concern to operators.

(b) List the error and informative messages produced by the program and indicate what action, if
any, is to be taken.

(c) Specify the actions to be taken if any problems occur with the computer itself; these may range
from a straightforward rerun to quite complex sets of instructions designed to back-out dubious
on-line updates to a database.

User Documentation
User documentation is a reference manual for experienced users, who will need to refer to it when
queries or exceptional circumstances arise; it also provides the basics for training of new staff.

The importance of this class of documentation should be clear but, historically, it has often been
conspicuous by its absence, its incomprehensibility or by being out-of-date. It is not unusual to find
that, for example, the accounts department in a company is using a system which nobody in the
section really understands. The consequence is that nobody can check it, and many aspects of it are
not used because nobody knows of their existence.

Some modern on-line systems include “help” facilities, which reduce user documentation, but do not
make it completely unnecessary.

In general, users require documentation which tells them:

! What the system does and how it works.

! How to provide input data to the system and how to control it.

! How to identify and correct errors.

! What are their particular responsibilities.

As described above, each user manual must be tailored to suit the system and the particular users but,
in general, the contents will include:

(a) An introduction giving a simple overview of the system.

(b) Running the system; when users run the system themselves, the user guide must include details
of how to switch on the equipment, call up the programs they use, and also how to end sessions.
In some cases, instructions for taking back-up copies of data, etc. will need to be included.

(c) Input requirements: with some users, data input forms will need to be completed and sent to
the data input department. In other cases, users will themselves input the data, either from
individual source documents or in batches which have been assembled in the user department.

(d) Output with examples of all the different types relevant to the particular users. Some of these
will be screen displays whilst others will be printed reports available either as standard output
or on request.

158 Standards and Documentation

© Licensed to ABE

(e) Error messages: an explanation of all the error messages which might occur, together with the
appropriate action to be taken. This section should include details of the person to contact if
problems are experienced.

(f) Logging procedures: each installation should set up standards for manual logging of any
exceptional occurrences, with details of the action taken.

(g) A glossary of terms used.

(h) Index: all except the shortest of manuals should have a comprehensive index, since the
experienced user is likely to refer to it only occasionally but wants to be able to find the specific
item quickly.

D. USING STANDARD FORMS

We have seen that forms are used to record, transport, present and store data. If they are well thought
out, they can be used efficiently. If they are carelessly designed, they can hamper the efficient
working of a system.

The systems analyst and designer should be aware of the basic ideas behind sound form design.

(a) Abolish Unnecessary Forms

We should begin by asking whether a given form is essential or not – can it be either eliminated
or combined with another form?

(b) Establish Objectives

The objectives must be established before designing the form. At each point at which the form
arrives, it should contribute to efficiency. Forms are “mobile”. Their efficiency can be
achieved only by consultation with the people concerned.

(c) Clarify Functions

The functions of the form must be clear. A descriptive title should be given to it, together with
pre-printed advice and guidance and an indication of the route to be followed by the document.

(d) Ease of Use

Clerical work should be minimised. This may be achieved by pre-printing fixed data –
especially codes to be used in data processing.

Ease of use should be a priority in the design. Various points could help here – elimination of
carbon copying, pre-punching filing holes, avoiding misleading and unnecessary information,
provision of a filing margin, grouping together in the order in which data items are to be
entered into the computer, permitting enough space for manual entries, correct and appropriate
spacing if typing will be undertaken, supplying as continuous stationery if it is in constant use.

(e) Appearance

Attitudes may well be influenced (at least in part) by the document’s appearance, and so the
analyst should design the form in such a way that important items are underlined, the number of
typefaces is not excessive, various colours are used, as necessary.

Standards and Documentation 159

© Licensed to ABE

(f) Special Considerations

In addition, special care has to be taken when designing certain types of document.

! Computer Print-Out Forms

These may be statements, invoices, advice notes and so on. The basic computer output
must be structured on the manufacturer’s printed layout forms. Built up around the data
are the form outline and the appropriate headings. There must be enough horizontal and
vertical latitude or it will reduce the speed of the set-up operation of the printer and could
also spoil the final document.

! Computer Input Documents

These must have maximum clarity, as already described.

160 Standards and Documentation

© Licensed to ABE

161

© Licensed to ABE

Study Unit 11

System Implementation

Contents Page

A. The Implementation Process 162
Implementation of a Package 162
System Testing 162
File Conversion/Creation 163
Education and Training 163
Implementation Planning 164
Implementation Personnel 164

B. User Involvement 165
User Involvement in System Testing 165
User Involvement in Implementation 165

C. Changeover Strategies 165
Importance of Successful Changeover 165
Direct Changeover 166
Parallel Changeover 166
Phased Changeover 167
Pilot Running 169
Changeover Methods Compared 169

D. Post-Implementation Reviews 171
Project Review 171
Quality Assurance Development Review 172
Auditing and Audits 173

E. Training 175
Who Needs Training? 176
Types of Training 176
Computer-Aided Learning (CAL) 176
Training Plans 177
Training and Competitive Advantage 178

162 System Implementation

© Licensed to ABE

A. THE IMPLEMENTATION PROCESS

The purpose of implementation is to put the theoretical design into practice. It can involve the
installation of a complete system or the introduction of a small subsystem. A particular project was
selected. Its objectives, requirements and constraints were defined in the requirement specification.
A designer, or a team of designers, has specified a suitable system, in the systems design specification.
Now, the designed system must be developed and implemented. So, we can say that the aim of this
phase is:

to implement a fully-documented operational system which meets the original
requirements according to the design given in the systems design specification.

Implementation involves the following activities:

(a) Writing, documentation and testing of all the programs required.

(b) Creation of all the master files required in the system.

(c) Preparation of user and data processing department operating instructions.

(d) Commissioning of the new system.

(e) Education and training of all staff who will use the system.

Implementation of a Package
We have said that the possibility of using a ready-made package should always be investigated before
the decision is taken to write a tailor-made system. If it is possible to use a package, activity step (a)
will not be required. There may, however, be some subsidiary programs to write to supplement the
package and, often, these will be produced by the supplier. Some of the operating instructions will be
supplied as part of the package but these will probably require “personalising” to suit the individual
company. In particular, methods of collecting and entering data, and the control procedures connected
with these activities, will be unique to the company and, therefore, they will still have to be produced.

All the other activities, (b) to (e), will have to be carried out, and it may look as if we are not saving
much effort by choosing a package. This is not true, however, since the short description given under
(a), often covers months (or even years) of work. With a package, all the other activities can build on
the foundation of a tried and tested set of programs which can often be seen operating in another
company before work starts.

System Testing
The transfer to operational status should begin with a positive written statement by the project leader
and system designer to the effect that the system is fit for operation. This, of course, is the whole
purpose of the testing procedures.

System testing will follow a similar pattern to the testing of programs. First, simple files will be
created and the sequence of the data flow diagram followed. The output from each program will be
scrutinised to see that the data has been processed correctly.

One of the main errors that may come to light is the misinterpretation of the design specification, so
that, although a program works correctly in its individual tests, its input or output is not compatible
with another program. For example, one program may expect a data item to be three digits without
allowing a space at the beginning of a two-digit number (so that, for example, 12 has to be entered as
012), while another will allow a space.

System Implementation 163

© Licensed to ABE

When the programs can pass data reliably between themselves, then the data is made more complex,
until there is sufficient confidence to use live data.

Systems testing builds up the confidence and experience of the users and data processing staff.
Wherever possible, data should be prepared on the new system’s input forms.

File Conversion/Creation
When a new system is to be implemented, it is likely that the master files either do not exist, or, if
they do, that they are not organised as required by the new system. Before the system becomes
operational, the master files must be created. This can be a major task, and it may involve the
production of a file-conversion system, with its own programs. This is expensive, because the
conversion will be a once-and-for-all operation, and the programs will be used only once.

With many systems, it is possible to enter the static data into the new files over an extended period of
time prior to the changeover to the new system, leaving only the dynamic data for later entry. For
example, product descriptions, code number, supplier details, etc. could all be entered into a product
file quite a long time before the stock levels.

When the time comes to enter the active (or “volatile”) data, the data files must be “frozen”, so that
the time chosen to do this is often over a weekend or other non-working period. Any transactions and
amendments that occur while the file is being created will then have to be entered.

However, this can be a blessing in disguise, since the updates can be carried out using the new system,
and then the state of the new file after updating can be compared with the old file which has been
updated via the old system, and thus prove the validity of the new system.

As with the entry of static data, control totals should be used but manual checking of a listing of the
files will usually be necessary. Even so, however good the original data collection and the subsequent
data entry, some errors must definitely be expected. These will be straightforward mistakes, and also
omissions and conflicting data items. Therefore, a procedure for handling these as they are
discovered must be devised prior to the file-creation stage.

File creation imposes a heavy load on user departments, particularly if the information is coming from
a manual system. Not only do the users have to extract the required data from their manual records
but, after it has been put on to the computer, they have to check it for accuracy. If a system starts with
inaccurate data, the confidence of the users will very quickly be undermined, so it is most important
that adequate time is allowed for this part of the work.

If the volume of data to be entered is large, the company may be incapable of handling the additional
load. Also, if conversion is from a manual system, there may be insufficient clerical staff available to
fill in the conversion input forms. Sometimes, it is possible to employ temporary staff but, often, the
only solution is to use the services of a computer bureau which specialises in file conversion and/or
data entry. The service may include the clerical aspects, data preparation, and even the actual creation
of the files. The specification of the new file is given, and access to the data of the old file, after
which the bureau does everything necessary to prepare the new file.

Education and Training
An essential feature of the implementation of a new computer system is the education and training of
all staff associated with it. All staff must appreciate the objectives of the new system, and how it will
operate, as well as the facilities it will provide. Those staff who prepare data, operate the system and
use the output will require detailed training and practice.

164 System Implementation

© Licensed to ABE

The detailed training must be supported by adequate documentation. This will be the user manual
which is written by the system designer. There must be practice in the training programme. Special
practice sessions must be arranged, especially where there is a direct changeover, when there is no
“running-in” practice period of pilot or parallel running (see later).

Managers want to know what they can expect from the system, and where their responsibilities lie
with regard to the provision of data. With terminals and personal computers in user departments and
on managers’ desks, the necessity for everyone to understand the basic operation of the system is even
greater.

Training must also cover the procedures to be followed when something goes wrong. Many are the
stories of back-up copies being taken scrupulously every day, only to find, when they are really
needed, that the “recovery program” cannot read them. Training procedures should, thus, cover loss
of data during a session, owing to a disk which cannot be read. Also, what happens if there is a failure
in the electricity supply? Even if recovery is very simple, the first time a screen goes blank in the
middle of an operation, it can easily lead to panic.

We shall return to this subject with a more detailed examination of the training process later in the
unit.

Implementation Planning
The successful implementation of any system is based upon the following points:

! A project control monitoring time, cost and quality of output.

! Managerial commitment and involvement at all levels.

! Analysts who are good communicators and have a thorough knowledge of the organisation’s
operations and applications.

! The users’ knowledge of and agreement with the system objectives.

! Recognition of user responsibilities in the system development.

! A computer manager capable of getting user support and of instilling confidence in users.

Most of all, sound planning beforehand is essential.

The planning must be very thorough and include all activities and related responsibilities to make the
new system work and to withdraw the old one with its documentation.

In larger installations a co-ordination committee will be appointed. Their purpose is to ensure a
smooth implementation. The analyst will be the committee secretary and will have the major
responsibility. A timescale is established and regular progress meetings are held to ensure the
timescale is being kept to.

Implementation Personnel
As well as the specialist computing staff responsible for the implementation of a system, other
personnel have an essential role:

! The business manager and user group, including those involved in the prototyping, will be
brought in to make the final test.

! The technical manager will assist the users with the mechanics of actually running the
machine(s).

! Hardware representatives will be consulted over problems and for general advice.

System Implementation 165

© Licensed to ABE

! Consultants will be available for specialist advice on larger projects.

! The administrative section will be advised of new personnel, job and responsibility changes and
all the necessary clerical backup; again this is applicable to larger projects.

B. USER INVOLVEMENT

The object of the transfer to operational status is to shift responsibility for the system from
development staff to the users. So users need to be involved in both testing and then transfer.

Note that, if the system is large and complex, then there is no reason why parts of it should not be
tested and transferred at different times.

User Involvement in System Testing
Line managers will submit their own data and check the results of testing. This is incidentally, the
most difficult area of testing, owing to the need for the current procedure to continue until the new
system is proved and staff feel confident to undertake new tasks. There is also the problem of how
staff can carry out normal duties, while at the same time being concerned with their new roles.

User testing and carrying out totally new tasks may well involve evening and weekend working.
Checking outputs is not a familiar task, and the sheer amount of work involved may be daunting.
Managers may find it hard to check output which is in an unfamiliar form. Despite such problems,
though, attempts must be made to carry out tests involving the user as much as possible.

User Involvement in Implementation
At the implementation stage, managers will formally accept the system. They will be closely
involved in clerical procedures and in staff training.

In operation of the system, the line management must know the new duties that their staff will be
required to perform. They have to make sure that:

(a) Input data is being prepared correctly, and on time.

(b) New reports are being properly used.

(c) Their staff are able to use and understand the system.

During the project development period, the user management will have a great deal more work to do
in helping with the new system.

C. CHANGEOVER STRATEGIES

Importance of Successful Changeover
We now move on to consider the actual changing over of the systems. We are changing from a
development environment (old system working, new system being developed) to a maintenance
environment (old system abandoned, new system working).

The changeover implies changes in working practices: from clerical to computerised, from
centralised computing to distributed computing; from one type of machine to another; and so on.
Staff tend to resent change, and so to ease the way they must be kept fully informed, and in a direct
manner. Any individuals adversely affected must be told personally.

166 System Implementation

© Licensed to ABE

A perfectly sound system can be completely destroyed by poor changeover. To be successful,
remember, changeover has to have the support and involvement of managers and the co-operation
of systems staff and users.

Thus, prior to changeover, management must verify that the system does actually satisfy defined
information needs; that the equipment, software and staff necessary for successful changeover are
available; that control and audit procedures are in existence to ensure system integrity; and that
performance requirements have been established for the system’s assessment in operation.

It is the analyst’s responsibility to ensure that staff information is complete and accurate, the object
being to obtain co-operation and a smooth, trouble-free changeover.

There are two basic methods of changeover – direct and parallel – and some variations of these.

Direct Changeover
Using direct changeover, at a specified time the old system is switched off and the new switched on,
as shown in Figure 11.1:

Old system New system

Changeover date

Figure 11.1: Direct Changeover

This is advantageous in that resources are spared – the method involves the immediate discontinuance
of the old system. However, the new system must have been thoroughly tested so as to minimise risks
in initial operation. Should the new system meet with unexpected problems – hardware, software, or
design – then the old system may not be able to be retrieved.

As you will realise, this technique is potentially dangerous since it implies transfer of dependence
from a current working system to a new system which, although tested, has not been used in a real
situation. However, there are several situations where the technique is applicable or unavoidable:

! In very small systems it is often not worthwhile considering any other technique, owing to the
inherent simplicity of the system.

! In very large systems it is sometimes not feasible to maintain two systems simultaneously (as in
parallel and pilot running) owing to the work involved.

! Where there is little similarity between the old and new systems, the simultaneous running of
both systems may be unhelpful.

When direct changeover has been decided upon, it is usual to carry it out at a time when work is slack,
to assist staff to concentrate upon it. In direct changeover it is also important that everyone has
confidence in the new system. However, direct changeover is probably the most fearsome for staff
and it is not uncommon for absenteeism to rise sharply on the day of direct changeover or
immediately thereafter.

Parallel Changeover
In parallel changeover the old and new systems are run with the same data until there is confidence in
the new system, whereupon the old system is dropped. This is illustrated in Figure 11.2:

System Implementation 167

© Licensed to ABE

Old system

New system

Changeover date

Figure 11.2: Parallel Changeover

Parallel changeover or parallel running of the old and the new systems simultaneously allows a
comparison of output to be made between them. Any shortcomings of the new system can be
rectified, and continuous cross-checks made. This is the most common method of changeover, but it
is important to identify objectives, and a timescale must be established.

This method may be regarded as an extension of the testing of the new system, but this is really only a
sound approach if the two systems are really comparable, a somewhat unusual condition in real life.

There may be problems in the cross-checks. What, for instance, is the significance of any differences
between the old system and the new one which are discovered? Which is right and which is wrong?
Unhappily there is a tendency to put the blame for differences onto the new system! It may be that
differences arise merely from the greater sophistication of the new system.

Parallel changeover is often used so that the old system may still be operated when there is a
breakdown in the new system. If this is the main reason then there must be a specific limit to the
number of production cycles for which the parallel runs are to be carried out. What has to be
remembered in this particular context is that running in parallel means double the cost.

Another problem concerns the staff and other resources used to run the two systems together. There
may well need to be separate controls for the two systems, to be maintained and then reconciled.
Where the reconciliation is difficult, the period of parallel running may have to be prolonged. A delay
such as this could create tension and strain for the user department(s) because of the need to undertake
two operations.

The objective should be to terminate the running of the old system as soon as is conveniently possible.

Generally you find that a database has to be created, or else existing files must be converted into a
usable format, for the new system. The creation of files takes up a good deal of effort and resources.
After the construction of the database for the new system is complete, there is the important question
of maintenance. Any premature maintenance must be avoided, because maintenance of files for both
old and new systems can stretch staff to the fullest extent.

Some specialists argue that it is beneficial not to carry out a parallel run, as this imposes more
rigorous discipline on programmers and analysts to ensure that the system is viable. In any case,
parallel running should not be used as a means of showing up inherent faults in the new system –
programs should be properly pre-tested with live data beforehand.

Phased Changeover
Within the two basic methods discussed above we find a number of variations, of which the most
common is phased changeover, where the new system is introduced in phases or stages as each stage
is implemented and operating correctly. The phases continue until the whole system is in operation.

This method would be used for very large information systems which possess many complex
components and which cross organisational frontiers.

168 System Implementation

© Licensed to ABE

The method consists of a series of direct changes. The implementation of each phase can be
controlled, and risk to the user department is thus reduced considerably.

This method allows easier transfer of staff and is probably the most satisfactory method of working,
where it is possible. It permits thorough testing under real conditions while limiting the risk of system
failure. It requires, however, that part of the system functioning can be conveniently separated from
the rest. It also requires some additional clerical effort in handling two different systems
simultaneously. This method is sometimes called ‘pilot running’ (see later), although note that pilot
running can also be achieved under the parallel running method.

The great disadvantage of using any phased or pilot implementation is that users often have to wait
many months, or even years, for a system to be available to them which completely fulfils their needs.
Their needs may well change during the implementation period, and if their new needs are to be
featured in the system, the final system may never be seen. This ‘moving target’ phenomenon
experienced in many phased changeover implementations does much to frustrate and annoy both user
staff and data processing staff, and suggests that the original system as a whole was ill-conceived.

Figures 11.3 and 11.4 show how phased changeover can be accomplished via either direct or parallel
changeover. More complex combinations are also possible.

OLD SYSTEM NEW SYSTEM

Phase 1

Phase 2

Phase 3

Changeover dates for Phases 1 – 3

Figure 11.3: Phased Changeover Using Direct Changeover

System Implementation 169

© Licensed to ABE

OLD SYSTEM NEW SYSTEM

Phase 1

Phase 1

Phase 2

Phase 2

Phase 3

Phase 3

Changeover dates for phases 1 – 3

Figure 11.4: Phased Changeover Using Parallel Changeover

Pilot Running
Pilot running is usually used to mean where the new system is run under controlled conditions using
old data, where a small representative part of the old system is used as a test area, as shown in
Figure 11.5:

Old system

Pilot run New system

Changeover date

Figure 11.5: Pilot Running

This is a similar concept to parallel running but is less disruptive – data from one or more previous
periods is run first on the old system and then on the new one. Timings are thus less critical, although
realistic timing and data capture/conversion are not simulated.

Changeover Methods Compared
We will now give a brief list of the main advantages and disadvantages for each of the above
changeover approaches.

(a) Direct Changeover

Advantages:

! This is the simplest method: stop one system, start another. It is usually only undertaken
over a weekend or holiday period.

! No extra work in running two systems together for a time.

170 System Implementation

© Licensed to ABE

Disadvantage:

! Very high-risk – if the new system is disastrously wrong, it is difficult to recreate the old
system.

(b) Parallel Changeover

Advantages:

! This is a safer method as the old system is kept operational while the new system is
brought in.

! Much greater security.

Disadvantages:

! Greater effort is needed to run the two systems and to compare the outputs.

! It may not be very easy to revert to the old system should things go wrong. The new
system may handle the information differently, making it awkward to compare outputs.

! The responsibilities of staff may well change between systems, leading to confusion.

! Knowing when to make the actual changeover. This is usually a compromise between
too short a time, keeping costs to a minimum, and too long a time, allowing for extensive
testing.

(c) Phased Changeover

Advantage:

! There is considerable control as only manageable chunks are being changed over at a
time.

Disadvantages:

! The system may not easily be split into phases.

! The phases may well be different in the two systems.

! The interfaces between remaining old system phases and the new system phases already
changed over, are extremely difficult to control.

(d) Pilot running

This is often the preferred method.

Advantage:

! Considerable control is retained and no risks are taken even if direct changeover is
applied to each area.

Disadvantages:

! Time is needed to collect and collate the data to be used.

! The two systems may handle the data differently, making comparison of outputs difficult.

In practice a combination of methods is used. Rarely is a complex system subject to direct
changeover, nor a simple system to any form of drawn-out parallel running. Whichever method is
used, it is essential that data passed from the old system to the new is complete and accurate.

System Implementation 171

© Licensed to ABE

D. POST-IMPLEMENTATION REVIEWS

Project Review
Management will require a review to check that the system is up to requirements and to note lessons
for future use.

In an ideal situation, two reviews would be made:

(a) At the implementation stage;

(b) Six months later.

The first is unlikely to be undertaken in full, as implementation of a system is an extremely busy time,
and most DP staff feel that all the tests made will compensate for this. However, if an early review is
made, then the essential review three to six months later has some guidelines to follow and data to
compare with.

The review after a few months should be made by an independent consultant, who should assess
whether the projected costs and benefits are being realised. He should check if the system
requirements are being achieved and he should identify the strengths and weaknesses of the system.

The review consultant should be assisted in the review by an audit team who will undertake a parallel
audit review of the system. In addition, a user representative and a representative of the development
staff should be available for consultation as required.

(a) Topics for Review

The following points should be reported on by the review:

! The manpower estimates, compared with the actual manpower effort and skills achieved.

! The amount of machine time used during testing.

! The overall costs, analysed in detail.

! The delivery plan, with any differences explained.

! Lessons learned on the techniques and approach used for:

(i) project management;

(ii) technical aspects;

(iii) development techniques.

! Productivity achieved since implementation.

! Program sizes and any lessons learned here.

! Relationships between the DP department and:

(i) users;

(ii) other departments;

(iii) DP procedures;

(iv) other systems;

(v) the lessons learned here.

172 System Implementation

© Licensed to ABE

(b) Scope of Review

Having studied the reasons for a review after six months or so, and the aspects to be reported
on, you should have a fair idea of the scope of the review. It is, however, worth setting it out
formally.

The review consultant should examine:

! The documentation of the system, programs and operator and user procedures.

! The test packs developed for future maintenance.

! The test data, results and test logs already used and achieved.

! The errors found to date, the type of error, the department and program responsible, the
cause and status of the errors.

! The user’s opinion and view of the system – problems and benefits, deficiencies and
training needs, and input and output.

! The design of the system and its operation; the interaction with other systems; the
system’s control functions and audit trail (see later in this study unit).

! Details of data capture procedures.

! A study of the operations department.

! full cost/benefit analysis, to decide if the system justifies its costs.

! Any recommendations to be made – enhancements required, operational changes, any
changes to documentation, data integrity, testing facilities, controls, training, user
procedures and personnel, and anything else that can be discovered.

The review consultant has a wide brief and is given plenty of time in which to carry out his review.
He will inevitably find defects, but hopefully will also identify strengths in the system.

Quality Assurance Development Review
Quality assurance is the task of ensuring that the system is built to the specified quality and, as such,
can be considered the responsibility of the technical staff. However, a separate quality assurance
function is useful on all but the smallest projects.

We have already discussed some of the QA functions, which, broadly are:

(a) Monitoring – checking that standard procedures of working are adhered to and that
standardised documentation is used. Monitoring involves producing independent reports on the
current state of the project.

(b) Advising -providing independent expertise on any aspect of the project, particularly with
regard to set procedures (such as requests for tenders, etc.) and standards.

(c) Auditing – carrying out formal checks to ensure that the system is working as specified.

At the start of a project, someone should be given responsibility for quality assurance with respect to
the provision of user facilities and the satisfying of user requirements. This person should be involved
from the feasibility study through to implementation, and beyond.

There also should be a quality assurance review made following the design stage. This is not the
same as the full project review discussed above.

The QA review is to ensure that the design is valid. It is important to incorporate testing standards to
ensure a high detection rate for potential failures as soon as possible in the system cycle, since the cost

System Implementation 173

© Licensed to ABE

of correcting faults escalates rapidly as the cycle progresses. The following checklist may provide a
guide to the quality assurance review:

! Have the objectives been met?

! Have the problems been solved?

! Have any new problems been introduced?

! Is the design vulnerable to change?

! What is the weakest link in the system, and which precautions have been taken to minimise the
effect, should the system break down?

! What if the computer breaks down?

! Is the design practical for implementation and operation?

! Is the design dependent on key staff?

! Is the system economically viable?

! What are the security risks?

! What are the known disadvantages?

You should notice that this is really a risk assessment.
In the above list of QA functions, the first mentioned is “monitoring”. We shall discuss this in the
next unit and you will note that it is an ongoing activity throughout a system’s life.
Also in the list of functions is “auditing”. Whilst auditing may or may not formally be classed as a
QA responsibility, it is closely related, especially in respect of internal audits.

Auditing and Audits
We have seen that quality assurance is an activity which must continue throughout the duration of a
project – it must not be added on at the end. The management must ensure not only that standards are
laid down but also that they are followed.

The term “audit” is often used, in a more general sense, to mean the independent examination of any
completed work to ensure that it carries out the tasks required of it with the correct level of control to
ensure that errors are minimised. For example, the coding of a program could be audited by a more
senior programmer to ensure that standards had been adhered to and that the coding was correct.

It is a legal requirement that the financial transactions and the systems used to record and process
these transactions are subject to audit, to ensure that they show “a true and fair view” of the activities
of the organisation. It is also in the interests of the organisation to make certain that it is conducting
its business properly. For this reason, many organisations have their own internal audit
departments.

A computer system designer must accept that (even though the system itself does not require it)
auditors will require outputs (usually printed), so that they may be satisfied that all is in order. With
the advent of computers, the task of auditors is made much more difficult; no longer can they trace a
complete transaction through a series of handwritten ledgers. Indeed, if they ask to see a sales ledger,
they may well be handed a reel of tape. Auditors must, therefore, have control systems, themselves
properly documented and containing such items as a pack of test data, as well as full details of the
system and its controls (equally well documented).

174 System Implementation

© Licensed to ABE

(a) Work of auditors

The work of internal auditors can be divided into two categories:

! Installation auditing covering, in particular:

(i) security aspects, which will be discussed in the next study unit;

(ii) the evaluation of controls over the processing of data and, in particular personal
data with regard to the Data Protection Act;

(iii) production of standards, best practice, etc.

! Application auditing where it is important that auditors retain their objectivity whilst
providing as much assistance as possible to the development team.

Advances in information technology enable money, mail, police detective work, meetings,
information enquiries and very many other activities to take place using computers and data
transmission. Such transactions provide a whole host of confidentiality, privacy and security
issues for management. Auditors are able to evaluate controls, pinpoint weaknesses or risks,
and advise management of appropriate action to take.

The objectives of an external auditor are to assess whether the company’s accounts give a “true
and fair view” of the company’s affairs and whether proper books of accounts have been kept.
With computer systems, auditors will be concerned that control procedures for the operation of
the programs and the storage of data have been incorporated in the system and are working
properly. When a company is considering installing a computer system, the opinion of its
auditors, with regard to the system being selected, can be very useful, since the auditors will
know the type of controls which should be included.

When carrying out an audit, auditors will want to check the various control procedures which
have been set up: these will include controls within the computer programs and also in the
manual procedures which feed input into the system and ensure that output is handled correctly.

Auditors will be required to test the system (and its controls) not only during implementation
and the actual changeover to the new system but also at intervals during the normal operation of
the system. Auditors should have their own test data, containing both correct and irregular
information, so that the system is adequately tested. They should be informed whenever
programs or procedures are changed, so that they can ensure that all the control procedures are
still effective.

(b) Audit Trail

Even if security procedures did not require it, auditors will ask that an “audit trail” be provided.
This will be printed evidence, showing the passage of transactions through the system, giving
not merely totals but also information as to the way in which those totals are obtained. The
audit trail may make use of existing control procedures, and it will cover source documents;
coded documents (from source); control totals; prints of master files; error messages generated
during processing; and the processing log itself. In most cases, auditors will require their own
copy of this printed information; it will not be sufficient for the designer to lend a report on a
“see and return” basis.

It must be expected that during the operation of some procedures, something will go wrong and
the run will be abandoned. It should be (but rarely is) common practice to have a processing
log, in which the start and finish of every operation is recorded and remarks added where
justified, such as runs which have been stopped before completion. These logs must be
regularly examined by the auditor, to ensure that controls are adequate. It is highly probable

System Implementation 175

© Licensed to ABE

that security precautions will have been introduced to ensure that sensitive or valuable output
(for example, printed cheques) are not duplicated, or that duplicate copies are destroyed. It may
not be so certain that a sales invoice which has been, say, cancelled because of a malfunction is
correctly reinvoiced. Yet, there is a possible loss to the company in that event, comparable to
the duplication of a payment.

(c) Operational Audit

After a system has been running for some time, an operational audit may be carried out to see if
the real system comes up to what was hoped from it. For example, a stock control feasibility
study may have shown that introduction of a particular system should reduce stock holdings by
50% while, at the same time, reducing the number of stockouts by 60%. These results will not
be achieved in the first month’s operation of the new system. After it has been running for a
few months and stock levels have settled down, an audit might be carried out to see if the
projected benefits have been obtained.

E. TRAINING

End-users will expect thorough training as part of their acceptance of the new system, and it is also in
the interests of the organisation that their staff should be properly trained in its use.

There are three aspects to be considered in developing effective training:

! Who should be trained?

! How should they be trained?

! What levels of training are needed?

These questions can only be completely answered with a full knowledge of the system involved. But
generally:

! Those who just need knowledge can attend a manufacturer’s training school or attend targeted
in-house courses.

! Those requiring a skill can go on specialist training courses, which can be conducted internally
or by the product manufacturer.

The training should be provided in relays, i.e. only so many staff at a time, whilst the others continue
to operate the old system and receive information and instructions relating to the new system. With
careful planning, the training should not create many problems. At all times, care should be taken
with staff problems and worries.

This suggested approach does have drawbacks though:

! The users who will actually use the system are precluded from early involvement.

! Considerable despondency results as the staff involved resent cramming facts about the new
system at brief meetings.

! Before the system is even implemented, it can be doomed to failure if the training is not done
properly and earlier groups of trainees report back the shortcomings to the scheduled later
groups.

The way around the problem is simply systematic consideration and planning of training
requirements, with full communication of all the training plans to staff at all levels.

176 System Implementation

© Licensed to ABE

Who Needs Training?
The short answer is, everyone who is involved with the system. All grades of staff from management
downwards will, at the very least, need to be educated in the new system.

Training is best given just before any new duties are to be undertaken, so that the training is not
forgotten.

Types of Training
The principles governing the appropriateness of different types of training include:

! Full-time training is best carried out away from the normal place of work, to prevent
distractions.

! Generalised lectures giving background to the system should be given to all who are to be
involved.

! Detailed training about particular aspects should be given to small groups and undertaken in
situ, between normal work periods.

! Each type of training should cater precisely for its audience.

! On-the-job training can be beneficial under certain circumstances.

We can distinguish between action learning and formal learning.

! Action learning is learning through participation in change. By doing, people achieve a
concrete feeling of what is possible or what the change will mean. This approach can be used
to actually experience working with new technology.

! Formal learning is learning through a set of training and education programmes that are linked
to the change sought.

The integration of formal learning with experience in action will frequently be effective in IT training.

Computer-Aided Learning (CAL)
CAL is widely used to deliver “individualised” instruction. It is most successful in teaching
procedures and skills, such as how to use a software package. Also called CBT (computer-based
training), it is a development of programmed learning books.

Advancing technology now permits CAL systems to be much more interactive – generating questions
randomly rather than just in a fixed order, and allowing free-format answers rather than just multiple-
choice selection as a result of rapid database searching. Intelligent CAL can modify the teaching
strategy to suit the individual user, by modelling the pattern of the student’s responses.

On-line training facilities can be called open learning centres, which may be defined as:

Training facilities set up on site where training materials may be accessed at any time via
CBT, multi-media, CD-ROMs or via a network for distance learning activities, ultimately
leading to the “virtual classroom” using interactive training on the Internet.

The issues an organisation should consider when assessing the viability of using open learning centres
and on-line systems for staff development and training include:

! It provides ‘Just In Time’ training.

! May cut down the cost of sending personnel away for training.

System Implementation 177

© Licensed to ABE

! May save training costs/course fees, e.g. cost-benefit of using open learning or on-line which
reaches a wider audience than traditional methods.

! CBT training fits around the working day.

! Setting up and managing a centre needs to be discussed:

(i) Full-time administrator

(ii) Automatic booking system

(iii) Evaluation of software/course used

(iv) Need to design and develop own support material for own specific requirements.

! A key advantage of this method of training is that it allows staff to train themselves on a need-
to-know basis.

Training Plans
The employment interview is the first stage in the employment process, seeking to match the needs of
an organisation with the experience of possible employees. The next stage is to develop employees’
potential so that they can carry out a widening range of tasks. Some of these tasks will be ones
currently being carried out by more senior employees but, with ever-changing technology, others will
be new to the organisation as well as the employee. It is thus even more important to develop training
plans, which should commence at recruitment and be revised at appraisal. These plans must be well
thought-out so that the needs of the organisation are matched with each employee’s aspirations.

Training should be related not only to the needs of the individual but to the organisation also. The
appraisal systems will have identified the objectives for the short and medium term and the skills
required to achieve those objectives. These skill requirements can be matched against those already
possessed by the employee, thus identifying any training needs. It may be that some skills have not
been used for a period of time and that a refresher course is all that is needed. Alternatively it may be
a skill that the employee does not at present have, and thus a full training programme will be
necessary.

Training plans, as for all plans, should be drawn up in a systematic, well conducted and cost-effective
way. The development of a training plan is a six-part process:

(a) Specification of Training Objectives

This should cover educational and personal objectives, and the experience and ability required
prior to training, as well as the training needed.

(b) Analysis of Training Needed

Individual training needs are assessed based on job descriptions and individual career paths to
date.

(c) Design of Training Programme

There is a choice of standard college programmes, specialist organisation courses, specific short
courses or specially created courses.

(d) Selection of Training Method

Whether training is to be on or off the job. Also a range of methods are available, from the
traditional ‘chalk and talk’ to the use of interactive video and computer-aided learning. A one-
off session for a small number of people would perhaps use a formal lecture followed by

178 System Implementation

© Licensed to ABE

supervised hands-on training, whilst a need to train large numbers of staff on an on-going basis
could warrant the investment in computer-aided training methods.

(e) Implementation of Programme

This covers booking courses and arranging job back-up and learning motivation. The timing of
the training is important. The impact on current system operation should be minimised whilst
at the same time ensuring staff are ready for the change. On the other hand, if training is
completed too early then staff will soon lose some of their skills as there will be no opportunity
to reinforce the training with practice, the new situation not being ready yet.

(f) Review of Training

This is a lengthy process of recording feedback from trainees, testing the knowledge required
and eventually evaluating the trainees’ job performance.

There are a range of training techniques available, and it is more effective to keep formal lectures to a
minimum and to provide hands-on training as much as possible. Some lectures and talks are
necessary, though.

End-user management should receive the same training as the hands-on end user.

Training and Competitive Advantage
Effective IT training will bring benefits not only to the staff but to the organisation as a whole.
Sometimes the need for training is recognised but not followed through in practice. The organisation
may thus miss out on the following kinds of benefits:

! Employees often judge an organisation on the opportunities/expectations for personal
development, so they will be keen to work for one where these are good.

! Replacement skills for technological change: highly developed, flexible workforce.

! Organisations with a good training reputation are able to attract good recruits/improved work
performance/increased morale and self-confidence/positive working environment/reduced error
rate/less supervision.

179

© Licensed to ABE

Study Unit 12

System Maintenance and Security

Contents Page

A. Monitoring 180
Change Monitoring 180
Threat Monitoring 180
System Appraisal 180

B. Systems Maintenance 181
Maintenance Problems 181
Program Maintenance 181
Maintenance Team 181

C. Database Maintenance 182
Scope 182
Means 182
Database Revision 182
Database Back-up and Recovery 182

D. System Enhancements 183
Enhancement or Development? 183
Software Packages 184

E. Need for System Security 184
Categories of Threat 184
Sources of Breaches of Security 185

F. Security Measures 187
Prevention and Detection of System Errors 187
Physical Security 189
Data Security 191
Aspects of Network Security 192
Contingency Planning 193

180 System Maintenance and Security

© Licensed to ABE

A. MONITORING

Monitoring is an essential activity in the routine running of a system. Monitoring of the system
begins immediately the system is implemented and continues throughout the system’s life.
Monitoring is one of the principal activities of the Data Manager or Administrator. It involves
keeping a close and formal watch on everything that happens within the database environment, such
as the frequency of access of each user, the type and level of access, the most-accessed and least-
accessed data items, failure rates, proper use and generation of documentation, and so on.
The results of monitoring lead to maintenance of the system.

Change Monitoring
There might be a number of reasons for changing systems. Assessing the results of such changes, or
the prediction of the results for the system, is one of the purposes of monitoring.

Typical reasons for change – and, hence, monitoring objectives – are:

(a) Changed management with different requirements.

(b) New products incorporated in the system.

(c) Different manufacturing and administrative procedures being adopted by the organisation.

(d) All organisations evolve, bringing various degrees of change.

(e) External influences such as new legislation.

Threat Monitoring
As well as monitoring the effects of change, it is necessary to watch for signs of weakness in the
system. This is called threat monitoring. Typical tell-tale signs of weakness are:

(a) Input documents not quite meeting requirements.

(b) Output reports not being used.

(c) Requests for speeded-up output.

(d) Complaints.

(e) Continual hardware breakdown.

(f) A high incidence of error.

(g) Too much being done manually.

System Appraisal
Yet another reason for monitoring is as a check that the system’s actual performance matches the
design predictions. This is known as system appraisal. This kind of monitoring is done at the early
stages soon after implementation. Clearly, all the threat monitoring symptoms apply here. Also, cost
must be a factor in these checks, as must the degree of satisfaction of the user.

System Maintenance and Security 181

© Licensed to ABE

B. SYSTEMS MAINTENANCE

Maintenance Problems
Maintenance of systems cannot be avoided but it can be made easier if ease of maintenance is
designed in at the early stages of system development. In fact, maintenance is the principal reason for
the employment of analysts. There is very little need for them to write completely new work.

Earlier in the course we discussed structured design of systems, particularly SSADM. All modern
design methodologies use a structured approach, which requires comprehensive documentation,
because not only does this give easier to develop and easier to test systems, but also it gives easier
maintenance of systems. Structured methodologies lead to more or less self-contained program
modules or subroutines. Each of these performs one processing task. It is therefore easy to identify
the section of program requiring maintenance.

Whilst this will be true at the early stages of the operational system’s life cycle, soon after
implementation, it is unlikely to remain so and the maintenance team must be alert to the problems.
Maintenance activities must be fully documented to assist future maintenance programmers.

When systems are changed, they become rather more complicated, cumulatively. Then, the user’s
requirements change, so that they no longer conform to those specified when the original systems
were implemented. This, in turn, means that maintenance tends to be progressively harder, and uses
more and more resources as the systems become older. As a rule, we can say that experience teaches
that a system which is five to six years old is likely to need complete replacement, rather than
modification.

This means that organisations which adopted computerised systems 20 years ago (or even a decade
ago) have many “vintage” versions. While users simply see a service which is steadily worsening, the
DP department is painfully aware that more and more of its efforts go towards maintenance – often
50%, or even more!

The introduction of new computer technology and new user aspirations adds to the difficulty of the
situation.

Program Maintenance
Programmers tend to dislike maintenance as it can be very routine, repetitive and tedious. It is
necessary though.

Whilst predictable changes should be built-in to the system, unpredictable changes such as latent
bugs, law changes, changes in business practice will all have to be dealt with.

Maintenance Team
Large installations will probably have a distinct maintenance team. They have the responsibility to
check the documentation of new systems at the handover stage and to act as a quality control unit on
the work produced by the development team.

The maintenance team is an excellent training ground for new programmers and analysts. Sometimes
the development staff rotate with the maintenance team for specific projects. This has the effect of
spreading good ideas right through the development group.

In smaller installations, outside contractors are sometimes employed. In other instances a more ad-
hoc approach is used with whoever happens to be available being allocated the maintenance task.
This lacks continuity and is probably the worst option.

182 System Maintenance and Security

© Licensed to ABE

C. DATABASE MAINTENANCE

The reasons for database maintenance are similar to those for systems maintenance. However, as with
everything else pertaining to the database, maintenance is controlled and authorised by the DBA.

Scope
Exactly what is meant by “maintenance” in a database context varies. In the early days of computing,
it was used solely to refer to changes of content and structure of a database. Nowadays it also
includes data definition and creation, file definition and generation, revision and conversion as well as
update changes.

Means
Database maintenance is generally made using a software tool of an appropriate type. Application
generators are useful, as are impact analysis tools which can predict the effect of changes. Most of
all the data dictionary provides a comprehensive referencing tool. In theory, IPSE packages
incorporate maintenance tools, but in practice they have avoided this activity. Because maintenance is
the principal DP activity, this exclusion from IPSE has greatly hindered the adoption of IPSE.

Database maintenance is generally undertaken via the DBMS. As this is always a proprietary
package, there should be a maintenance contract accompanying it. Thus any DBMS problems are
covered for maintenance.

As with systems maintenance, the route to efficient database maintenance is via the documentation. It
is the DBA’s responsibility to see that all documentation is up-to-date and complete.

Database Revision
Occasionally more than simple maintenance of the database is necessary and a full revision is
undertaken.

This involves:

(a) Redefinition of the logical data structures.

(b) Restructuring of the physical data storage to accommodate redefinition.

(c) Reorganisation of storage as a tidying-up exercise.

For example, suppose it is decided to divide a large department into two smaller departments. As a
result the records defining the departmental structure will be redefined to show that it is now two
departments and the appropriate personnel records will be linked into this new definition.

As a knock-on effect the physical storage of the records will be changed, as there is now a whole new
department and new linkages have been defined.

Finally, the physical storage will be reorganised to aid the efficient use of the linkages.

In short, revision of a database has several far reaching knock-on effects, which have to be
accommodated.

Database Back-up and Recovery
Databases are subject to much activity of a complex nature. From time to time, something will go
wrong.

System Maintenance and Security 183

© Licensed to ABE

Typical examples are:

! A transaction error such as the wrong record being retrieved or a programming error being
highlighted.

! The whole system going down due to power loss or software failure.

! Complete or partial database destruction due to some natural disaster or major operator error.

Whichever fault occurs, it is necessary that the database be recovered. To make this possible, a back-
up strategy is necessary and a simple model is regularly to dump the database contents in a safe area
(e.g. copy it to separate disks), and to keep a log of all subsequent transactions to the next dump, and
so on. Clearly, the more frequent the dump, the faster and more complete the recovery. On the other
hand, normal database processing activities must be suspended during the dump, thus inhibiting the
processing.

It is the Data Manager’s responsibility to decide on a balance between frequent dumping and
uninterrupted processing. The balance will depend upon the nature of the data held and its security
sensitivity; the number of data updates made as opposed to simple accessing of the data; and the
urgency of uninterrupted processing.

There are various ways in which transactions between dumps can be logged. The transactions
themselves can be logged or the state of the records being processed either before or after the
transaction can be logged. The choice will depend upon the DBMS being used.

The following recovery techniques, are in general use:

! Following a transaction error, roll the database back (back out) to the state prior to the
transaction using the original unaltered versions of the records and start again.

! Following a whole system failure roll back the database, as for a transaction error, through all
the uncompleted transactions and start again.

Whilst it may be necessary to reapply failed transactions manually so as to avoid the original problem,
the back-up and recovery mechanisms are contained within the DBMS and are activated
automatically.

D. SYSTEM ENHANCEMENTS
Once a system is live, users frequently become more ambitious for their system. They will then ask
the computer staff to add on extra functions. This would be an enhancement of the system.

Computer staff tend to be rather wary of such proposals, as they will be only too well aware of the
uneasy balance that exists in any system, especially at an early stage of its life.

Enhancement or Development?
Every system will require enhancement. There is the choice of producing and developing an entirely
new system. But even then, changes may be required to existing programs, as the new system will
have to incorporate the previous system, and it will be sensible to use already prepared software.

Sooner or later, a choice must be made between enhancement (of the existing system) and
development (of a new system).

184 System Maintenance and Security

© Licensed to ABE

(a) Reasons for Change

Several reasons for change lead to this point. Examples could be:

! General frustration with the limitations of the present system.

! The attraction of new technology.

! A relatively new system that has several severe design faults.

! Management decision on an expansion of the computing function.

It will depend very much on the particular circumstances.

(b) Points to Consider

There are several points to consider.

! Enhancement entails less risk, as it involves a proven system.

! Documentation is easier – most is already in use.

! Documentation can be quite informal, as staff are already familiar with the system.

! However, amending and testing existing code is far more time-consuming than writing
brand new code.

After some time with a mature system, several enhancements may well have been made. Eventually,
the user may be faced with inevitable development of a new system. Successive enhancements will
tend to distort the original system quite considerably. An example of this would be a batch processing
system that has been entirely converted to immediate access. The original system will have had other
activities timetabled into it when the batch runs were not being done. There will now be considerable
upset with the system going entirely open.

Software Packages
When the software is bought as a pre-prepared package (as they often are), it may not be quite right
for the desired project plan, and so enhancement will be required to adapt the package to the exact
requirements. Thus enhancement is not confined to mature systems.

E. NEED FOR SYSTEM SECURITY
Publicity is frequently given to damage to computer equipment through fire or flood, and to
computer-related crimes. These breaches of security bring to our attention the need to protect
computer systems. Breaches such as minor accidents, omissions and errors may seem insignificant in
each individual case, but these can accumulate into serious loss. It is the responsibility of the design
team to design systems which are secure against such events.

A computer-based system is a combination of many resources, all of which are required for the
efficient operation of the system. These resources include hardware, systems software, applications
software, files and data, documentation, people, data transmission facilities, etc. A computer system
cannot be 100% secure, but measures must be taken to reduce the risk to an acceptable level.

Categories of Threat
There are two main categories of threat to security – accidental and deliberate threats. These can be
split into the following sub-categories:

System Maintenance and Security 185

© Licensed to ABE

(a) Accidental Threats

These include:

! Malfunctioning of a hardware component

! Modification of software

! Naturally occurring threats such as fire/flood/earthquake, and interruptions or surges in
power supply

! Death or injury of people, affecting their capacity to do normal work

! Interruption of data transmission lines

(b) Deliberate Threats

These are:

! Removal or corruption of programs/data

! Disclosure of information

! Withdrawal of labour

The following order of threats was produced as the result of a study by IBM. It is significant in that
over 50% of all threats originate from errors and omissions:

! Errors and omissions (over 50%)

! Dishonest employees

! Fire

! Disgruntled employees

! Water

! Intruders and others (less than 5%)

As you can see, most of the security breaks are of the accidental variety, but these are harder to detect.
Examples are when a programmer accidentally overwrites someone else’s file or program, or when a
machine or operating error causes the destruction of a direct access file. However, if we concentrate
on the other type of security hazard, the wilful or mischievous, we will almost certainly be protected
against the casual or involuntary threat.

There is an increasing problem in the proliferation of on-line terminals and readily learnt
programming languages which make the computer more accessible to more people than was the case
in the past. Thus it is most important to ensure that the operating system has means of identifying the
users and logging their activity. No on-line terminal system should allow users to log on and off from
the system without some reference to the activity being stored in a journal file to monitor, at the very
least, connect time.

Sources of Breaches of Security
(a) Accidental Damage

We cannot ignore the possibility of fire, water or explosion in the building where the computer
installation is sited. This may not be directed against, or caused in or near, the computer itself
but the machine may be at risk in the overall damage. A fire may destroy not only the machine,
which is replaceable, but also the magnetic media storing programs or data, and also the

186 System Maintenance and Security

© Licensed to ABE

documentation of the programs. These losses may be irretrievable or, at the very least,
expensive.

Accidental damage can also be done to equipment or storage media through physical threats
such as dust, magnetic influence, high temperatures or dampness.

(b) Accidental Errors

These may be the mistakes of programmers, operators or users, which somehow cause an error;
for example, loading the wrong tape, loss of output, or errors in despatch of output. They may
be the result of a latent bug in the computer program which slipped through the testing phases
and only reveals itself after many successful runs. (Users who inadvertently leave their
terminal logged on when they are not present may unintentionally open the way for someone
else to sabotage the system.)

(c) Dishonesty

This may take the form of the removal and holding for ransom of master tapes/disks containing
the programs required by the company, or of the corruption of a payroll or payments system, or
even of stock control, to enable an employee, or a confederate, to embezzle sums of money.
Alternatively there is a possibility that exception reports may be suppressed, so that the
existence of some condition, such as unpaid bills or excessive credit limits, is not reported.

(d) Sabotage and Espionage

This heading may include both the financially motivated operations of someone acting on
behalf of a competitor to gain access to information or to destroy records belonging to the
company, and the actions of a disgruntled employee seeking revenge over some grievance, such
as sacking.

There was a classic example of this in an American company which gave one month’s notice to
their file librarian. At the end of the period of notice the employee left, and the company
discovered that all the disks had been recycled in such a way that all their files were lost. So
great was the chaos (the creditors would still send in their accounts, but debtors would not pay
without notice) that there was a loss running into millions of dollars, and the company
eventually had to consider liquidation.

The third area in this category is trade union activity. A small number of key employees in the
computer room can, by striking, “hold the company to ransom”. Failure to send out the
quarterly accounts would cost more money, in loss of revenue and cash flow, than perhaps 10
years’ salary for the staff concerned.

(e) Mischief

We have included a separate category here which is really part of sabotage but which is more
difficult to detect and deter. There is a certain intellectual challenge in trying to “beat the
system”. This syndrome is seen in the current craze for hacking – the deduction of secret
access codes to allow telephone calls to be made to an information base.

In one English school, the children were given free access to a timesharing system on the
massive computer system operated by a local company. One enterprising group of boys
devised a means of logging on to the system even in the periods when they were supposedly
barred, and they wrote a special program which, in turn, loaded more and more programs
simultaneously, monitoring the progress with relevant messages on the terminal, until they had
monopolised the processor to such an extent that they effectively brought all other work to a

System Maintenance and Security 187

© Licensed to ABE

standstill. There was no criminal intent and no thought of vandalism; it was part game and part
“research”.

(f) Viruses

In recent years we have heard much about computer viruses. They are particularly prevalent in
personal computer systems.

A computer virus is a self-loading program which automatically spreads itself to every disk and
personal computer machine that it makes contact with. It loads itself into the personal
computer’s system software. Once there it will be dormant until it is triggered by some event.
This can be a date (for example, any Friday 13th) or particular classes of password, or just by
logging on, and so on.

Once activated, the virus will cause problems. Some merely give a harmless message; others
cause all the screen output to fall to the bottom of the screen; others wipe files clean; others
corrupt the data files, and so on. Once a virus is lodged in a machine it is not an easy task to
get rid of it. And if the machine is part of a network, the virus will almost certainly spread to
every other machine in the network. Given that many networks are international, in a very
short time a virus is spread throughout the world.

All kinds of precautions should be taken against viruses. For example, use a special program to
check the files on a disk before they are activated. If a virus is found, destroy the disk. Always
obtain software from reputable sources, but even then check all disks before using them. In an
earlier study unit we listed some control measures to prevent viruses or other illegal codes
entering a system.

On no account be complacent about viruses. Their effects can be disastrous and they are
endemic in computer systems.

F. SECURITY MEASURES
Security measures for a computer system should be designed and specified as early as possible in the
project cycle. It is often uneconomic or impractical to add security features to an existing system.

Prevention and Detection of System Errors
There are, basically three categories of system error which need to be guarded against:

! Hardware errors may be transient or permanent. Transient errors are normally detected,
overcome and reported by the operating system. Recovery from permanent errors has to be
treated in a similar way to program and system error recovery.

! Software and program errors, should not strictly exist. However, it would be nonsense to
expect this to be the case. The very nature of software errors makes them unpredictable, and in
every case the recovery procedure may differ.

! Invalid data is the final class of error. Under no circumstances should invalid data cause an
unscheduled halt in a program. Errors in source data, input data and output data should be
detected by validation procedures or programs, usually involving sampling, prenumbering limit
checks, etc. Stages of data control in a typical system are shown in Figure 12.1.

188 System Maintenance and Security

© Licensed to ABE

SOURCE DOCUMENTS

Control
check

Manual Encoding

Data Preparation

Control
check

Data Transmission

INPUT

Control
check

Data Processing

OUTPUT

Control
check

Data transmission

Output Processing and
Distribution

USER

Figure 12.1: Data control processes

Administrators can assist in achieving successful operation of IT activities and enhancing security
according to the following guidelines:

! Division of responsibility between users and those responsible for the system installation

! Monitor staff performance (can be achieved by supervision)

! Training is essential

! Users should only be able to access their own control records

! Co-ordination should develop from work schedule and monitoring of progress

! Documentation should be effectively maintained

! Protect confidential data

! Protect hardware and software

System Maintenance and Security 189

© Licensed to ABE

The adoption of industry standards provides a considerable security protection. For example, standard
development and testing ensures the reliability of the system, standard documentation enables full
checks to be made without misunderstanding or confusion, standard operating procedures are
designed to minimise misuse and careless use of hardware and of disks, and professional standards
among the staff ensure the highest quality of personnel.

Staff should always “double-up”. No part of a system, whether in development or operational stage,
should be reliant on only one member of staff. For obvious reasons, this is a recipe for disaster. At all
times, at least two and preferably more members of staff should be familiar with development stages
and be involved in operational procedures.

Not only does this give protection against fraud (though admittedly, not absolute protection), it also
gives protection against staff absence.

Physical Security
Failure of physical security is common. Sound buildings and regular maintenance of both premises
and equipment are essential.

(a) File Backups

To safeguard files and data continuity, there must be an effective system providing several
generations of backups (backups to backups) for all files. In the event of a system failure,
systems could then be restored.

Whenever a program is implemented or amended, a security copy on disk or tape should be
stored in a secure, off-site place. There should also be a complete and up-to-date copy of all
associated documentation. Information held on magnetic media does not last indefinitely.
Thus, when copies are likely to be held for a number of years, procedures for re-recording at
suitable intervals must be made.

Data security is provided by copies of master files and, for complete security, a copy of each
file should be kept off-site. These copies should be taken at regular intervals, and the best way
of taking back-up copies of data and how often they should be taken must be considered when
the system is designed. Adequate time must be allowed for security procedures in the daily
running of the computer system. These precautions apply just as much to a PC system running
applications vital to the business as to minicomputer and mainframe installations.

It is important to practise data recovery procedures which, of course, should be fully
documented.

(b) Power Sources

Computer equipment should, usually, be run on its own line, and the earthing arrangements
must be examined carefully. Specialist knowledge is required if random, rather obscure errors
are not to occur because of an inadequate electrical earth. If a “clean” power line is not
possible, then using a constant voltage transformer (CVT) will enable the current to be
stabilised by “smoothing out” spikes (see below) as they occur within the supply. Even a
photocopier, for example, would cause sufficient power fluctuation to disrupt a computer
system.

The two main problem areas are possible breaks in the power supply and “spikes” – transient
disturbances which last only a fraction of a second but which can be very large in amplitude.
The latter, which can be caused by switching on or off of large pieces of machinery (or even,
sometimes, equipment such as a photocopier), can cause peculiar data errors or corruptions and

190 System Maintenance and Security

© Licensed to ABE

unprogrammed jumps in the sequence of software instructions. The local electricity board
should be asked to investigate if unexplainable faults occur on a random basis.

(c) Security of Access

In terms of physical security, we are concerned with access to the computer environment.

There are a number of standard procedures that may be adopted – for example:

! Standard burglar alarm equipment is available, and relatively easy to install.

! Strict control over visitor and staff access – staff entering must be identified.

! Minimal number of entrances, ideally only one.

! Use of guards or receptionists.

! Closed-circuit TV to monitor access and movement.

The more complicated question is access to the computer environment by employees. The use
of access control mechanisms such as card keys and key pads on doors is one answer.

However, necessity for access should be questioned. It is not necessary for application
programmers to enter computer rooms as they work on terminal PCs which can be sited
anywhere. Similarly, analysts work either within the user’s own environment or at a PC. Only
operators and systems programmers (who program the computer’s own internal software)
require access directly to the computer room.

Even then, a system of authorisation can be installed, either via key cards/pads or simple
“signing-in”.

(d) Control of Keys

Losses of keys are often not reported simply because it costs little to get another key cut!
Duplicate keys may be readily available in cabinets and desk drawers which are themselves not
locked. Spare keys are often labelled invitingly to indicate their use. Locks and padlocks often
bear serial numbers which, when quoted to manufacturers, permit extra keys to be issued.
Another common feature is that a single master key is used to open all or most locks – so that
this key, in the wrong hands, virtually puts the entire system in jeopardy.

Key control should be introduced as an added security measure. Keys should only be issued on
signature to authorised staff and should be periodically checked to see if they are still held by
those staff. Each separate set of keys should be clearly and individually marked – it has been
known for a single set of keys to be passed from hand to hand by members of the staff so that
an inspection of individual key holding was satisfied!

It is better not to issue a key when this is possible. Instead, the main key holder should go with
an authorised member of staff to unlock the door himself or herself, making sure that the door
is subsequently locked again. When a member of staff leaves the organisation, the return of any
keys held must be part of the normal clearance procedure.

(e) Fire Hazard

Fire and smoke constitute a major hazard. Automatic fire detectors (e.g. smoke detectors) and
controls can, and do, malfunction and are often slow to react properly. If a fire-quenching
system (e.g. halogenated hydrocarbon) is installed, or if appropriate fire extinguishers are
provided, human reaction can still cause problems. Actual combustion (as opposed to burning)
can cause more damage and the introduction of large quantities of water will often damage
media maintained in a humidity-controlled environment.

System Maintenance and Security 191

© Licensed to ABE

(d) Environmental Control

The power consumption of modern machines is very much smaller than for older ones, so that
air-conditioning is becoming less necessary, and it is more likely to be installed for the comfort
of the staff than as a machine requirement. However, the tolerances on air temperature and
humidity should always be checked with the supplier, who will often send round an engineer to
advise on the installation of the machine. Air-conditioning may be advised in order to reduce
the amount of dust in the computer room.

Anti-static carpeting is often used on the floor, to prevent a build-up of static electricity, which
can play havoc with magnetically-recorded data.

The insurance company must be consulted for its approval of the proposed computer room.
The company will, probably, have strict standards for fire detection, extinguishing equipment,
and the construction materials to be used. A security system to prevent unauthorised access is
also necessary.

Also to be considered are vibration, lighting, decoration, sound-deadening and sound-proofing.

Data Security
Data must be protected against:

! Accidental modification or destruction

! Intentional modification or destruction

! Unauthorised disclosure.

Restrictions on access are the main precautions against these threats. However, whilst such measures
are all important, it is important to realise that they may not be sufficient. Problems may also arise
during “normal” running of the system, and data can be acquired for unauthorised purposes by:

! Producing extra copies of print-outs, either by re-running or by photocopying;

! Reading of sensitive output;

! Availability of waste output;

! Unauthorised copying of data files – for example, to diskettes;

! Using data from the live files for testing – this can also lead to accidental modification or
destruction of the data, and it is a practice to be completely forbidden.

Considerable care should be taken over the reliability of staff members who have actual access to data
and systems. Only trusted staff should access the most sensitive data. In addition, measures should
be adopted to prevent staff who leave the organisation, disclosing sensitive data and procedures to
others. Whilst this is clearly against the law, it requires positive precautions to be taken.

(a) Restricting Access to Data Transmissions

The increased use of data transmission, often over public lines, has increased the vulnerability
of data. One means of ensuring that sensitive data does not fall into the wrong hands is to make
use of encryption techniques.

Encryption involves the data, either in storage or (more commonly) in transit, being encrypted
or translated into seemingly meaningless code, so that someone with unauthorised access to the
data cannot make sense of it because he does not know the encryption algorithm. When the
encrypted data arrives at the destination it must be decoded using the same algorithm.

192 System Maintenance and Security

© Licensed to ABE

(b) Passwords and Answerback

This constitutes the simplest method of security. However, it is not as secure a control as it is
often considered to be. The principle is simple enough. An identity (a number, as a rule) is
keyed in and then the system seeks the appropriate password from the user. When this is keyed
in it must not be “echoed”, or it should be overprinted so that it cannot be read over the user’s
shoulder (or retrieved from a waste-paper basket!).

Two questions arise, however:

! How is the remote user to be given the password? By letter, or telephone?

! What action can be taken to prevent the password from being known to unauthorised
persons at this particular stage?

Also, the system must necessarily store a list of passwords, so that it is able to compare
incoming words with this list. There have been instances where the complete list of passwords
has been improperly extracted. The passwords themselves are often scrambled in some way to
offset this possibility.

Perhaps the biggest security threat may come from the user himself or herself, through
carelessness. If the remote user prints the password (as has been known!) by the side of the
terminal, this largely negates the security attempts. A common example of this is found in the
banks’ cashpoint or ATM systems where a card is inserted into a machine and a PIN number
(password) is keyed in by the card holder, to request cash from the machine. Some card holders
actually write the password on a piece of paper in the wallet in which the cash card is kept –
thus being extremely helpful to pickpockets!

The answerback system on the terminal may be regarded as perhaps the most cost-effective
system in our present context. After setting up the link by using the normal routine of the
password, the system calls the remote terminal and uses the answerback drum to generate a
specific fixed series of characters. A similar method disconnects the original call and then re-
establishes it by dialling the identified subscriber.

The setting-up procedures are often called extended handshake techniques. These do
safeguard against unauthorised users who obtain a password and then try to use this from a
terminal other than the appropriate one.

(c) Restricting Access to Specific Files

Control methods include the provision of an access authority level for each file. Users of the
system are given an authority level associated with their password. The level is compared with
the authority level required for each file access, and if the password level is greater than the file
level, access is denied.

Aspects of Network Security
Our above discussion of computer system security includes networked systems, and we have
mentioned the need for data encryption to protect transmitted data. We also need to consider some
specific points relating to intranets and the Internet.

(a) Privacy of E-mail

A key point for employers is that they need to establish clear employee expectations with
regard to e-mail privacy. A clear policy is required so that all employees are aware of the
following:

! Who is legally able to read your e-mail?

System Maintenance and Security 193

© Licensed to ABE

! What are the different levels of access to the system?

! Why a monitoring system is being implemented, e.g. for users’ satisfaction and systems
usage.

! Setting of standards (tone, language usage, culture etc.) of e-mail messages within and
outside the company.

This policy should be communicated to employees so that they fully understand the issues
involved.

(b) Control of Web Pages

We have noted how easy it is for companies or individuals to set up Web Pages. As you might
expect, this can present considerable security problems, particularly if individual employees of
an organisation start setting up pages on their own. The dangers of this include:

! Possible inaccuracy of information provided by an unsupervised individual.

! Violation of corporate standards for Web Pages, and possible harm to the company’s
image.

! Providing an access route for hackers to gain entry to the company network and possibly
damage the system or obtain confidential information.

! Employees may conduct private business on the Web during company time.

These dangers can be minimised by having:

! Corporate firewalls – these are complex pieces of software to protect private intranet
sites. Possible breaches in firewalls can be avoided e.g. by having fax modems
controlled through a server.

! Effectively controlled corporate standards for web site development.

! One prime home page only.

Contingency Planning
Practically all precautions against disasters, major and minor, will involve some cost. Therefore, in
order that money is spent where it will be of most benefit, the management must determine where the
system is most vulnerable, and where sensible precautions will reduce the risks in these areas.

Contingency plans should be set up to cover the various levels of disaster which might occur.
Recovery after data has been corrupted, for whatever reason, will mean starting again, using back-up
copies and, perhaps, entering some transactions again. Complete destruction of the installation by
fire, flood, etc. will mean using security copies of the data and programs on another computer system.
Where the processing is very critical to a company, the organisation of a stand-by system may be
considered.

(a) Standby

As many of the accidental threats to physical security are very real and have a considerable
impact should they happen, many organisations arrange a standby agreement with a similar site.
These arrangements range from informal mutual assistance to formal contractual agreements.
However, only the formal agreements can be relied upon.

The standby may be for only one processing function or application or it may be for the whole
computing system. Whichever is the case, the standby must be fully tested and kept up-to-date
so as to take over at short notice.

194 System Maintenance and Security

© Licensed to ABE

All updates to the main site hardware or software must be duplicated in the standby. Copies of
all processing runs should be passed to the standby. In fact, if the standby is going to be really
effective, then real activity must take place at it and very regular testing needs to be undertaken.

A common arrangement nowadays is to have more than one processor connected to a common
store and common set of peripherals. They can do duplicate work, or one can be devoted to on-
line work and the other to background work but ready to take over if the on-line machine
malfunctions.

(b) Contingency Plans

More generally than just standby facilities, an organisation should have some form of disaster
contingency plan. Several subplans that address specific contingencies may be better than a
single large contingency plan.

Typical subplans include:

! The Emergency Plan

This will specify those measures that ensure the safety of employees when disaster
strikes. The measures include alarm systems, evacuation procedure and fire suppression
systems.

! The Backup Plan

The organisation should make arrangements for backup (standby) computing facilities in
the event that the regular facilities are destroyed or damaged beyond use. These
arrangements constitute the backup plan. Backup can be achieved by means of some
combination of redundancy, diversity and mobility:

(i) Redundancy – duplication of hardware, software and data facilitating continuous
processing by the backup system

(ii) Diversity – by having spare computer centres, risk of loss is reduced

(iii) Mobility – may involve: reciprocal arrangements; hot site – complete facility;
cool site – constructed at a separate location – is effectively an empty shell without
computers.

! The Vital Records Plan

These are the documents, microforms, disks etc. which are necessary for carrying on the
organisation’s business. The vital records plan specifies how the vital records will be
protected. This will also detail siting of backup copies. May involve physical or
electronic transportation.

	_SysAnalSyll.pdf
	Aims
	Programme Content and Learning Objectives
	After completing the programme, the student should be able to:
	Method of Assessment
	Reading List
	Essential Reading
	Additional Reading

	SysAnal01.pdf
	A.	INFORMATION AND DATA
	B.	INFORMATION NEEDS
	Role of Managers
	How Much Detail is Needed?
	Timeliness
	Accuracy
	Rarity
	Quality of Information
	C.	TYPES OF INFORMATION
	Operating Information
	Management Information
	Trigger Information
	Background Information
	D.	MANAGEMENT INFORMATION
	Regular Reports
	On-Demand Reports
	Ad-Hoc Reports
	Exception Reports
	Analyses
	Forecasting
	E.	SYSTEMS THEORY
	System Properties
	Probabilistic and Deterministic
	Open and Closed
	Quantitative and Qualitative
	F.	OBJECTIVES OF A SYSTEM
	Necessity for an Overriding Objective
	Objectives of a Wider Context
	How Objectives are Created
	G.	A BASIC INFORMATION SYSTEM
	H.	DECISION SUPPORT SYSTEMS
	Decision Theory
	Role of Computer Systems
	MIS, EIS and DSS

	SysAnal02.pdf
	A.	THE DEVELOPMENT LIFE CYCLE
	Introduction
	Frederick Winslow Taylor
	SYSTEMS ANALYSIS – FEASIBILITY STUDY
	Employee Consultation
	Initial Study
	Feasibility Study
	SYSTEMS ANALYSIS - DATA COLLECTION
	Methodology
	Data Analysis
	Data presentation

	SysAnal03.pdf
	INTRODUCTION
	A.	APPROACHES TO SYSTEM DEVELOPMENT
	The Traditional Approach
	Structured Approach
	Database Approach
	Rapid Application Development (RAD) Approach
	Participation
	B.	“HARD” AND “SOFT” SYSTEMS
	Definitions and Examples
	Application to Systems Development
	“Soft” Systems Approach
	C.	CHARACTERISTICS OF A “GOOD” SYSTEMS ANALYSIS METHODOLOGY
	Client’s List
	Criticism of User’s List by the Systems Analyst
	Qualities of a Structured Specification
	D.	SELECTING AN APPROPRIATE METHODOLOGY
	E.	MANAGEMENT OF CHANGE
	Changes Resulting from Computer Systems
	Planning for Change
	F.	PROJECT MANAGEMENT
	Establishment of Standard Procedures
	Defining the Project
	Project Manager’s Responsibilities
	G.	PROBLEMS DURING DEVELOPMENT
	Causes of Project Problems
	Poor Project Identification
	Insufficient Investigation
	Incorrect Design
	Inadequate Planning
	Poor Project Management
	Poor Programming
	H.	RULES OF PROJECT MANAGEMENT
	I.	SPECIFIC DEVELOPMENT CONTROLS
	Documentation Control
	File Restriction
	Audit Trails
	Amendment Control
	J.	CONTROL TECHNIQUES
	Activity Decomposition
	Milestones
	Software Engineering
	Network Analysis
	Use of Computers for Network Analysis
	Documentation
	Project Manager’s Role

	SysAnal04.pdf
	INTRODUCTION
	A.	THE DEVELOPMENT LIFE CYCLE
	Key Points and their Output
	The Importance of Documentation
	B.	SPECIFICATION OF REQUIREMENTS
	System Selection
	The System Environment
	The Initial Study
	User Involvement
	C.	THE PERSONNEL INVOLVED
	The Computer Professionals
	Users as Clients
	Computer and User Staff Relations
	D.	SYSTEMS INVESTIGATION
	The Scope of Fact Finding
	Interviewing
	Observation
	Questionnaires
	Existing Written Material
	Sampling
	E.	THE FEASIBILITY OR INITIAL STUDY
	Aims
	Determining the Main Requirements of the System
	Considering Alternatives
	Cost/Benefit Analysis
	The Report
	F.	USING CONSULTANTS

	SysAnal05.pdf
	A.	LOGICAL AND PHYSICAL DESIGN
	Points to Note
	B.	THE DESIGN STAGE
	Importance of Requirement Specification
	Influences on Design
	The Design Process
	C.	SYSTEM DESIGN SPECIFICATION
	D.	DESIGN CONSIDERATIONS
	Input Design
	Output Design
	Processing Considerations
	Storage Considerations
	Maintenance and Expansion
	Design Constraints
	E.	HUMAN-COMPUTER INTERFACE
	Command-driven Interfaces
	Menu-driven Interfaces
	Graphical User Interfaces (GUI)
	Voice
	Screen Design in Practice

	SysAnal06.pdf
	A.	STRUCTURED SYSTEMS ANALYSIS AND DESIGN METHODOLOGY
	What SSADM Will Do
	What SSADM Will Not Do
	Impact on Project Time-Scales
	Room for Improvement?
	Taking on SSADM
	B.	WORKING WITH USERS
	Development Stage
	Operational Users
	Walk-Throughs
	C.	RAPID APPLICATION DEVELOPMENT (RAD)
	D.	JOINT APPLICATION DEVELOPMENT (JAD)
	Methods of Development
	Flexibility
	E.	SKILLED SMALL TEAM DEVELOPMENT
	F.	PROTOTYPING
	Techniques and Usage
	Types of Prototyping
	Advantages and Disadvantages
	G.	COMPUTER AIDED SOFTWARE ENGINEERING (CASE)
	CASE Tools
	Use of CASE
	Fourth Generation Languages (4GLs)

	SysAnal07.pdf
	INTRODUCTION
	A.	SYSTEM DEFINITION
	B.	STRUCTURED SYSTEMS ANALYSIS AND DESIGN METHODOLOGY (SSADM)
	C.	DATA FLOW DIAGRAMS (DFDS)
	Example 1
	Example 2
	D.	DRAWING DATA FLOW DIAGRAMS
	General Rules
	E.	ADVANTAGES AND DISADVANTAGES OF DFDS
	F.	WORKED EXAMPLES
	Suggested Answer

	SysAnal08.pdf
	INTRODUCTION
	A.	ENTITY-RELATIONSHIP MODELS (OR LOGICAL DATA STRUCTURES)
	Cautionary Points
	B.	WORKED EXAMPLE
	Scenario
	Suggested Answer
	C.	DATA DICTIONARIES
	Description
	D.	CASE TOOLS
	What is Prototyping?
	E.	NORMALISATION
	F.	FITTING THE TECHNIQUES TOGETHER

	SysAnal09.pdf
	INTRODUCTION
	A.	ELH NOTATION
	Events
	Effects
	Notation
	Sequence
	Selection
	Iteration
	Some rules
	Parallel Structures
	Quit and Resume
	State Indicators
	B.	INTERRELATIONSHIP BETWEEN THE DFD, ENTITY-RELATIONSHIP MODEL AND THE ELH.
	C.	WORKED EXAMPLE
	Suggested Answer

	SysAnal10.pdf
	INTRODUCTION
	A.	THE ROLE AND SCOPE OF STANDARDS
	Development Controls
	Performance Standards
	Operating Standards
	Benefits of Standards
	B.	THE STANDARDS MANUAL
	C.	OTHER DOCUMENTATION
	System Design and Specification
	Program or Module Documentation
	Operating Instructions
	User Documentation
	D.	USING STANDARD FORMS

	SysAnal11.pdf
	A.	The Implementation Process	162
	Implementation of a Package
	System Testing
	File Conversion/Creation
	Education and Training
	Implementation Planning
	Implementation Personnel
	B.	USER INVOLVEMENT
	User Involvement in System Testing
	User Involvement in Implementation
	C.	CHANGEOVER STRATEGIES
	Importance of Successful Changeover
	Direct Changeover
	Parallel Changeover
	Phased Changeover
	Pilot Running
	Changeover Methods Compared
	D.	POST-IMPLEMENTATION REVIEWS
	Project Review
	Quality Assurance Development Review
	Auditing and Audits
	E.	TRAINING
	Who Needs Training?
	Types of Training
	Computer-Aided Learning (CAL)
	Training Plans
	Training and Competitive Advantage

	SysAnal12.pdf
	A.	MONITORING
	Change Monitoring
	Threat Monitoring
	System Appraisal
	B.	SYSTEMS MAINTENANCE
	Maintenance Problems
	Program Maintenance
	Maintenance Team
	C.	DATABASE MAINTENANCE
	Scope
	Means
	Database Revision
	Database Back-up and Recovery
	D.	SYSTEM ENHANCEMENTS
	Enhancement or Development?
	Software Packages
	E.	NEED FOR SYSTEM SECURITY
	Categories of Threat
	Sources of Breaches of Security
	F.	SECURITY MEASURES
	Prevention and Detection of System Errors
	Physical Security
	Data Security
	Aspects of Network Security
	Contingency Planning

