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Foreword 

In early 1988, the American Psychological Association (APA) Science Directorate 
began its sponsorship of what would become an exceptionally successful activity 
in support of psychological science—the APA Scientific Conferences program. 
This program has showcased some ofthe most important topics in psychological 
science and has provided a forum for collaboration among many leading figures 
in the field. 

The program has inspired a series of books that have presented cutting-
edge work in all areas of psychology. At the turn of the millennium, the series 
was renamed the Decade of Behavior Series to help advance the goals of this 
important initiative. The Decade of Behavior is a major interdisciplinary cam­
paign designed to promote the contributions ofthe behavioral and social sciences 
to our most important societal challenges in the decade leading up to 2010. 
Although a key goal has been to inform the public about these scientific contri­
butions, other activities have been designed to encourage and further collabora­
tion among scientists. Hence, the series that was the "APA Science Series" has 
continued as the "Decade of Behavior Series." This represents one element in 
APA's efforts to promote the Decade of Behavior initiative as one of its endors­
ing organizations. For additional information about the Decade of Behavior, 
please visit http://www.decadeofbehavior.org. 

Over the course of the past years, the Science Conference and Decade 
of Behavior Series has allowed psychological scientists to share and explore 
cutting-edge findings in psychology. The APA Science Directorate looks forward 
to continuing this successful program and to sponsoring other conferences and 
books in the years ahead. This series has been so successful that we have chosen 
to extend it to include books that, although they do not arise from conferences, 
report with the same high quality of scholarship on the latest research. 

We are pleased that this important contribution to the literature was sup­
ported in part by the Decade of Behavior program. Congratulations to the editors 
and contributors of this volume on their sterling effort. 

Steven J. Breckler, PhD Virginia E. Holt 
Executive Director for Science Assistant Executive Director 

for Science 

http://www.decadeofbehavior.org


Preface 

This book highlights several explanatory approaches to model-based measure­
ment. These approaches not only extend rigorous psychometric methods to a vari­
ety of important psychological constructs but, more important, also have the 
potential to fundamentally change the nature of the constructs that are meas­
ured. The models in the exploratory approaches have special parameters or fea­
tures that can represent important aspects of constructs that are not represented 
in standard item response theory models. 

The chapters in this volume are based on presentations that were given at a 
conference, "New Directions in Measuring Psychological Constructs With Model-
Based Approaches." The conference was held in February 2006 at the Georgia 
Institute of Technology in Atlanta. The conference was jointly sponsored by the 
American Psychological Association and the Georgia Institute of Technology. 
The book features chapters by 11 internationally distinguished authors, who 
have varying perspectives on how measurement constructs are impacted by mod­
em psychometric modeling approaches. 

Special recognition must be given to individuals who contributed their time 
and effort to the conference and to the production of this volume. Dr. James 
Roberts assisted not only with managing the conference but also with reviewing 
chapters for this volume. Several graduate students in the Quantitative Psy­
chology Program at the Georgia Institute of Technology also contributed to both 
the conference and the editing of the book. These students are Robert Daniel, 
Heather Mclntyre, Hi Shin Shim, and Vanessa Thompson. 

Finally, Marshall Picow, my husband, had a vital role in supporting me 
throughout the period of the conference and the preparation of the book. This 
volume probably would not have been possible without his unfailing and devoted 
support during my recovery from a serious accident that occurred during the 
week after the conference. 
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Measuring Psychological Constructs 
With Model-Based Approaches: 

An Introduction 

Susan E. Embretson 

More than a half century has passed since Cronbach (1957) made his well-known 
distinction between the correlational and the experimental disciplines in psy­
chology. The disciplines were characterized not only by distinct methods but also 
by different kinds of constructs. Psychological measurement is almost entirely 
within the correlational disciphne, which has individual differences as a primary 
focus. Certainly substantial changes have occurred within the two scientific dis­
ciplines and within psychological measurement over the past 50 years. But have 
the constructs that are measured using contemporary psychometric methods 
become better integrated with constructs that arise from the experimental disci­
pline of psychology? 

Within the measurement field over the past half century, item response 
theory (IRT) models and methods have replaced classical test theory (CTT) as 
the basis for developing many psychological and educational tests. IRT is model-
based measurement, in that the individual item responses are modeled. Thus, 
IRT models include not only one or more estimates to represent the persons but 
also estimates to represent the psychometric properties of items. This contrasts 
sharply with CTT, in which the main target is total score, not item responses. 
Hence, item properties are not represented directly in the model. 

The many practical, technical, and statistical advantages of IRT for develop­
ing psychological and educational tests have been published widely in both 
methodological and substantive journals. Further, IRT has been a major focus in 
numerous conferences and workshops, and these gatherings have resulted in 
many edited books. The properties of IRT models have also been given consid­
erable attention. For example, Rasch Models: Foundations, Recent Developments 
and Applications (Fischer & Molenaar, 1995) especially highlights the formal 
quantitative aspects ofthe models. Objective Measurement: Theory Into Practice, 
Volume 5 (Wilson & Engelhard, 2000) is an example of a series that contains a 
broad sampling of new applications and extensions of IRT models. Other books, 
such as Computerized Adaptive Testing (Wainer, 1990), focus specifically on a 
major practical advantage of IRT-based tests. Collectively, the many available 
edited volumes have made substantial contributions to psychometric methods 
and have further extended IRT into measurement in many substantive areas. 
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However, the integration of model-based approaches of IRT with substantive 
research on psychological constructs has received less attention. An edited book, 
Test Validity (Wainer & Braun, 1988), contains chapters that are focused on new 
approaches to explicating validity, which includes IRT model-based approaches. 
Although contemporary psychological theory is represented by a couple of articles 
in this book, the vast majority of articles concern methodological developments 
arising from within the correlational discipline. Another edited book that arose 
from a measurement-oriented conference focuses more directly on construct 
issues. A conference honoring Samuel Messick was held at Educational Testing 
Service in 1997. Although the papers from this conference (see Braun, Jackson, & 
Wiley, 2002) raised several issues about psychological constructs, they were not 
related to specific model-based measurement approaches. Furthermore, many 
papers at the conference could be characterized as primarily based on correla­
tional methods of theory development. 

The topics oftwo edited books are more directly relevant to interfacing meas­
urement methods with contemporary psychological constructs. Test Theory for 
a New Generation of Tests (Frederiksen, Mislevy, & Bejar, 1993) introduced 
model-based measurement as providing new approaches to testing and new ways 
to interface with substantive theory. Few applications have yet been reahzed, 
even though the book preceded the present volume by more than 15 years. 
Unfortunately, such delays are not atypical in the slowly evolving world of psycho­
logical testing. Some important recent developments in model-based measure­
ment are covered in Explanatory Item Response Models (De Boeck & Wilson, 
2004), along with many interesting illustrative applications. A major goal of De 
Boeck and Wilson was to provide an integrated presentation of several recent IRT 
models that could be specified with common statistical framework (i.e., as non­
linear mixed models). Hence, the scope of their book was necessarily limited. 

Thus, despite many important developments in psychological measurement 
in the past half century, there is little evidence that the integration between 
measurement and the constructs that stem from psychological theory has pro­
gressed much since Cronbach (1957) noted the two separate disciplines of psychol­
ogy. Perhaps the areas are fundamentally incompatible. This would be especially 
true if individual differences were never of interest in experimentally based theo­
ries. However, another possibility is that typical applications of IRT, like its pre­
decessor CTT, may introduce constraints that have limited the applicability of 
psychometric methods to constructs of interest in contemporary psychology. That 
is, the most widely used psychometric methods are most appropriately applied 
when a single source of impact (i.e., underlying dimension) influences both per­
sons and items. 

The purpose of this volume, in part, is to present a broad spectrum of model-
based measurement approaches that remove some of the constraints. Typical 
test development practices under both CTT and IRT require several assumptions 
that do not necessarily interface well with psychological constructs as conceptu­
alized theoretically. That is, the test developer must assume that (a) the same 
construct can characterize responses of all persons, (b) items have identical 
psychometric properties when administered to different persons, (c) items are 
fixed entities with known stimulus content, (d) items are calibrated prior to test 
scoring, (e) item response probabilities are monotonically related to the trait to 
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be measured, and (f) internal consistency between items on a test indicates 
adequate assessment of a trait. 

Although these assumptions seem fundamental to developing psychometri-
cally rigorous tests, they have also functioned to define a narrow set of tasks and 
conditions that are deemed appropriate for measurement. One obvious conse­
quence has been the popularity of multiple-choice tasks and related objective 
item formats because they more readily meet the constraints than do other tasks, 
such as constructed responses. Yet constructed response tasks and performance 
assessment are often regarded as more authentic measures that better represent 
conceptualizations ofthe domain or construct. The constraints also impact test 
content in other ways than item format. For example, empirical tryout of items 
involves evaluation and selection in terms of the constraints noted above. Item 
attrition is often quite high; a rate of 50% attrition is not atypical. With such high 
item attrition, the surviving items may not represent very well the original con­
ceptualization ofthe task domain. 

Several developments in model-based measurement have the potential 
to impact the nature of constructs that can be measured in psychology. Some of 
these developments remove one or more constraints, as described earlier, whereas 
other developments, such as explanatory psychometric models, permit a new level 
of integration of measurement and psychological theory. Many of these models 
(e.g., De Boeck & Wilson, 2004; Embretson, 1999; Glas & Van der Linden, 
2003; Mislevy, Steinberg, & Almond, 2003; Roberts, Donoghue, & Laughlin, 2000; 
Rost, 1990,1991; von Davier & Rost, 1995) have appeared in the psychometric lit­
erature but have not yet been available to the broader audience of psychologists. 

The purpose of this volume is to highlight several explanatory approaches to 
model-based measurement that can impact the nature of the psychological con­
structs that can be measured with rigorous psychometric methods. In this book, 
model-based measurement approaches that are more appropriate for the con­
structs of interest in many substantive areas of psychology are explicated and 
illustrated with apphcations. New developments of model-based measurement in 
four different areas are included as follows: (a) model-based approaches to mea-
suring qualitative differences between individuals; (b) model-based approaches to 
isolating entangled constructs; (c) model-based approaches for measuring person­
ality, psychopathology, and attitudes from self-reports; and (d) cognitive psycho­
metric models for interactive item generation during testing. 

In Part I, Model-Based Approaches to Measuring Qualitative Differences 
Between Individuals, several different types of explanatory models are repre­
sented. Qualitative differences between persons in the nature of a construct may 
occur either in cognitive measurement or in personality and attitude measure­
ment. A well-studied source of quahtative differences between groups is differen­
tial item functioning (DIF), which is a violation ofthe traditional psychometric 
constraint that items have identical properties for all examinees. A common 
psychometric procedure is to eliminate items showing DIF, which consequently 
narrows measurement of the construct. Another approach is to use model-
based approaches with DIF items included but with group-specific parameters. 
Although the item domain is not narrowed by using this approach, it is nonethe­
less controversial because an individual's estimated score will be impacted by 
demographic variables, such as gender or ethnicity. 
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In contrast, a model-based solution has broad potential to identify classes of 
individuals who differ qualitatively on the construct. These classes are based not 
on demographics but on the pattern of item responses. Mixture IRT models (e.g., 
Rost, 1991; von Davier & Rost, 1995) can be applied when the test scores do not 
represent the same construct for different examinees. Such a test probably would 
have poor fit to a traditional IRT model because the assumption of unidimension­
ality is violated. The mixture IRT models identify latent classes of examinees 
for whom the construct differs qualitatively. Thus, both the score levels and the 
latent class memberships of the persons can provide important information 
about individual differences. To give an example, success in solving spatial tasks 
does not necessarily involve spatial analogue processing. Some spatial tasks may 
be solved by either analogue or verbal-analytic processes, which can have impli­
cations for the external correlates oftest scores (Embretson, 2007). Of course, 
tasks that can be solved by more than one method could be eliminated from 
spatial ability measurement; however, the remaining tasks may be sufficiently 
restricted so as to adversely impact the theoretical scope of the construct. In 
chapter 2, Matthias von Davier presents an overview of mixture distribution 
IRT models. His chapter shows a progression of models, from unidimensional 
IRT models and latent class models to the mixture distribution IRT models, to 
handle varying assumptions about the nature ofthe construct. 

Items that measure the same dominant trait can also differ qualitatively. 
Diagnostic IRT-based models, such as the fusion model (Roussos et al., 2007), can 
be used to relate qualitative features of items to item solving. In mathematics 
achievement, for example, qualitative information about the specific skills that an 
examinee has mastered, as well as overall competency level, may be obtained. The 
diagnostic IRT models relate scored attribute requirements in the items to per­
formance. In chapter 3, Louis A. Roussos and his coauthors present an overview 
of diagnosing skills through diagnostic IRT models. 

Another approach to model-based measurement of cognitive skills is based 
on multinomial processing tree (MPT) models. MPT models were initially devel­
oped to study normal cognition in specific experimental paradigms in cognitive 
psychology, but more recently MPT models have been applied to understand 
and measure how special populations differ in latent cognitive skills. In chap­
ter 4, William Batchelder reviews the methodological issues that arise when 
MPT models are used for psychological assessment. He also describes recent 
applications to special populations. 

In Part II, Model-Based Approaches to Isolating Entangled Constructs, two 
approaches are presented that have an interesting relationship to the traditional 
psychometric principle of intemal consistency. Selecting items by intemal con­
sistency can lead to measuring either constructs at the wrong level of generality 
(Gustafsson, 2002) or trivial constmcts (see Steinberg & Thissen, 1996). Model-
based measurement approaches can aid in untangling the trivial or inappropri­
ate constructs from the theoretically targeted constmct. In chapter 5, Jan-Eric 
Gustafsson and Lisbeth Aberg-Bengtsson describe how model-based results 
reveal that the intended construct of a psychological test in itself can be under­
stood in terms of both more general and more specific constructs. Such results 
have important implications for distinguishing between constructs because tests 
that fit unidimensional measurement models, in fact, typically reflect multiple 



INTRODUCTION 

constmcts. Furthermore, broad constructs typically cannot be measured with a 
single item type because the specific constructs would confound the measure­
ment. In chapter 6, David Thissen and Lynne Steinberg describe how explicit 
or implicit internal structure in many self-report measures, such as clusters of 
questions based on some common stimulus or questions that are too similar, 
adds extraneous covariation among the item responses. Internal consistency 
consequently becomes inflated by these trivial sources of item covariation. 
They describe methods to use IRT models so as to remove these trivial sources of 
covariation that become entangled with the constmct of interest. 

In Part III, Model-Based Approaches for Measuring Personality, Psycho­
pathology, and Attitudes From Self-Reports, models that are especially applicable 
to self-report measures are described. For constructs in the psychopathology 
or personality domain, standard IRT models do not fit many measures. The two-
parameter and the three-parameter logistic models, which are often applied, pre­
dict that the probabihty of item endorsement increases to 1.0 for extreme trait 
levels. Yet, some extreme behaviors are not highly likely to be endorsed even by 
individuals with extreme pathology. In chapter 7, Niels G. Waller and Steven P. 
Reise present a study on a test for psychopathology in which the four-parameter 
logistic model is estimated to add an upper asymptote for item responses. They 
explore how the constmct is impacted by the choice of a model. 

For some psychological constructs, particularly in attitude measurement, 
a particular behavior or item endorsement is not increasingly likely for persons 
at higher levels ofthe construct. That is, a particular behavior (or attitude) may 
be likely at a moderate level ofthe trait but not at higher levels, as other behav­
iors replace it. If the traditional monotonic psychometric models are applied, 
such items will be eliminated as inappropriate, and the constmct will be conse­
quently narrowed. Recent developments in nonmonotonic models (Roberts et al., 
2000) have brought unfolding models into the domain of IRT. In chapter 8, James 
Roberts and his coauthors describe an extension of nonmonotonic models to 
include mixtures that can be used to model DIF or to decrease the impact of 
unconscientiously responding examinees from the measurement process. The 
latter application will increase the validity ofthe central construct under study 
in a given application. 

In Part IV, Cognitive Psychometric Models for Interactive Item Generation 
During Testing, model-based approaches are interfaced with computer algo­
rithms to develop items with targeted psychometric properties. In these 
approaches, test items are developed "on demand" or even "on the fly" without 
empirical tryout. Thus, the traditional constraint of requiring that test items that 
are fixed entities with previously obtained calibrations will not be met because the 
items are generated anew. The model-based IRT approaches for item-generation 
interface prior research on the items with test calibration. Models for two differ­
ent item-generation approaches, the item-model approach (Bejar, 2002) and the 
item-stmcture approach (Embretson, 1999), have been developed. In chapter 9, 
Isaac Bejar presents a broad overview ofthe substantive basis of item generation 
methods and their imphcations for psychometric models. Item difficulties in con­
temporary item generation are predictable from prior research findings using spe­
cial IRT models. However, in the modehng sense, it is important to view the items 
as having a random element because prediction is not perfect. New developments 
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in item-response theory models (De Boeck & Wilson, 2004; Janssen, Schepers, & 
Peres, 2004) include both random and fixed effects, so that the degree of item dif­
ferences may be rigorously assessed in the course of measurement. The random 
element is particularly appropriate when items are not fixed entities. In chap­
ter 10, Rianne Janssen develops a random effects version of the linear logistic 
test model (LLTM; Fischer, 1973) and discusses several types of applications. 
In chapter 11,1 present the structural modeling approach to developing a test 
with predictable item difficulties based on a cognitive model. An additional 
benefit ofthe structural modeling approach is that items may be banked by lev­
els and sources of cognitive complexity using a cognitive IRT model, such as the 
LLTM or the 2-PL Constrained model. An application to measuring spatial 
ability using an item generator is given to illustrate the structural modeling 
principles. 

As a collection, the chapters in this book present several new options for the 
researcher and the test developer. Because IRT is a rapidly developing field, 
many other new models may also be developed in the next few years. Of course, 
only time will tell whether applications of these models will broaden the scope 
of measurement to include constructs that are more related to other areas of 
psychological theory. Testing practices evolve slowly, unfortunately. However, 
the possibility of applying rigorous psychometric methods to very different kinds 
of psychological constructs is exciting. 
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Mixture Distribution Item Response 
Theory, Latent Class Analysis, and 

Diagnostic Mixture Models 

Matthias von Davier 

Different people may use different strategies when solving an item in a profi­
ciency test or when responding to items on a questionnaire. Some ofthe strate­
gies chosen may work well for all items in a given test, and some strategies 
may be appropriate only for a subset ofthe items. An example is mixed num­
ber subtraction, a class of problems similar to the ones studied by Tatsuoka 
and colleagues (Tatsuoka, 1987). Consider the following two items: 

3 1 1 1 
1. Solve: 2 - - l - = ? and 2. Solve 2 1 - = ? 

8 8 4 8 

Assume that students who use Strategy A solve these items by subtracting 
the integer parts and the numerator parts separately while disregarding poten­
tial differences in the denominator. This strategy would most probably lead to a 
correct answer to Item 1 and an incorrect answer to Item 2, because disregard­
ing the denominators will lead to mistakes. 

People who apply Strategy B solve the items in a completely different way: 
All mixed numbers are converted to fractions, and then the difference is calcu­
lated. Finally, the result is converted back into a mixed number. For example, 
Item 2 is solved using Strategy B as follows: 

n c - o 1 i 1 9 9 1 8 9 9 n l 
2. Solution: 2 - - l - = = = - = 1 - . 

4 8 4 8 8 8 8 8 

Strategy B involves, in comparison with Strategy A, more calculations, and 
using this strategy may take longer than using Strategy A. However, if correctly 
executed, Strategy B will generally result in correct responses. 

Obviously, if only the solutions are recorded, as is often the case in psycho­
logical testing and educational measurement, one can only judge whether stu­
dents were able to solve the item and perhaps derive some hypotheses regarding 
where they went wrong if samples of incorrect solutions can be examined. The 
application of a certain strategy or thinking process is often not observable, 
although there is indication that students differ in how they approach problems 
as well as in how well they perform once an approach is chosen. More generally, 

l l 
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many different strategies may be present, and particular types of strategies may 
be assumed if students switch between different approaches to solving a prob­
lem, depending on the items presented to them. 

Tatsuoka (1987) studied strategy differences in students solving mixed 
number additions. Other types of tasks that are often hypothesized to be prone 
to strategy differences are spatial tasks that involve mentally rotating a three-
dimensional structure that is depicted in a test in two dimensions. Kelderman 
and Macready (1990), Mislevy and Verhelst (1990), Rost (1990), and Rost and 
von Davier (1993) referenced these types of strategy differences and used a par­
ticular approach to analyze data in search of the assumed strategy groups of 
test takers. These authors found that such questions can be suitably analyzed 
using methods involving mixture distributions (see also Embretson, 2007). The 
mixture components represent the different strategies or approaches students 
take to solve the tasks administered in an assessment. 

More formally, mixture distributions are composite distributions, describing 
populations composed oftwo or more subtypes or subpopulations. In most cases, 
the component distributions are of a simple parametric form but with different 
parameters (such as means or variances) describing the differences between sub-
populations. The parametric families commonly found in mixtures are distribu­
tions such as the normal distribution for real-valued random variables, the 
Poisson distribution for count data, or the binomial distribution for sums of binary 
random variables. In social sciences, psychometrics, and educational measure­
ment, some commonly used mixture distribution models are latent class analysis 
models, the mixed Rasch model, as well as mixture item response theory models 
and mixture growth curve models. Recently, diagnostic models for skill profile 
reporting have been extended to mixture distribution models. 

This chapter gives an overview of mixture distribution models used in psy­
chometrics and educational measurement and provides references to develop­
ments and applications of this flexible class of models. 

Mixture Distribution Models 

For illustration purposes, I start with an example of an early attempt to mea­
sure certain features of human beings with the goal of coming up with an aver­
age representing a given sample. This example involved the length ofthe human 
left foot in a settlement in medieval Europe. For illustration, let us refer to foot 
length as a random variable denoted by x. Assume we want to model the distri­
bution of this variable x in a medieval settlement (see Figure 2.1). 

Let's say we have available data on this variable from two historic samples. 
Assume that one dataset is based on people selected at a farmers marketplace, 
whereas another was drawn at the cloth-maker's store. The tabulation of results 
for foot-length x in these two samples is provided in Table 2.1. Sample 1 has 
data based on 16 people from the farmers marketplace; Sample 2 has data from 
14 people assessed in front ofthe cloth-maker's store. 

The first question that comes to mind is whether there is a simple, well-
known, tractable model for this type of data—for example, whether we may 
assume a normal distribution for the combined sample. However, if we look at 
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Figure 2.1. Wood-print depicting the determination of an average of foot lengths. 
From Geometrie by J. Koelbel, 1575, Frankfurt, Germany. Image in public domain. 

our "made-up" data file, given in Table 2.1, we may suspect that there is more 
to the data, so that a simple normal density may not be sufficient to model 
these data appropriately. 

One may argue that it is obvious that the two samples come from two quite 
different distributions. One could test for mean differences, assuming that the 
two samples drawn are from two unknown populations. However there are a 
few measures above 10.0 in Sample 1, and there are also measures somewhat 
below 10.0 in Sample 2. Alternatively, one could try and see whether the mea­
sures taken can be predicted in some fashion on the basis of other knowledge 
we have about the people measured. However our made-up medieval samples 

Table 2.1. Results of Foot-Length Measures From Two Samples, Raw Measures, 
Means, and Standard Deviations 

Raw data 

Sample mean 
S.D. 

Sample 1: Marketplace 

9.1,9.2, 8.9, 9.4,9.8,10.2, 
8.8, 9.3, 9.5, 10.0, 9.3, 
8.8,9.0,9.1,10.1,9.3 

9.3625 
0.448 

Sample 2: Cloth maker 

10.5,10.7,10.8,10.4,9.9, 
10.0,10.5,10.4,10.3, 9.8, 

10.9,10.8,10.1, 9.7 
10.343 
0.392 
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do not contain other variables such as gender or age. Let us assume that the 
historic source tells us that only adults participated in the measurements. 

In that case, we may assume that our observations were drawn from both 
genders, and the observed difference between samples may simply stem from 
the possibility that there were more females than males in one place, and more 
males than females in the other place. The difference between means ofthe two 
samples drawn in locations may be an underestimate ofthe "true" gender differ­
ence between the foot lengths of males and females because we cannot be sure 
that there were only males in one sample and only females in the other sample. 

It would be nice to have a way to sort this out without exactly knowing the 
gender of each person contributing a measure in each case. As it turns out, there 
were researchers who thought so as early as 1886 (Newcomb, 1886; cited in 
McLachlan & Peel, 2000), even though Pearson (1894) is often given credit for 
the first application of a mixture of normal distributions to major data analysis. 
The question these (and other) researchers asked was: How can we represent the 
fact that observations in a sample may come from groups with different proper­
ties, without knowing which group each observation was coming from? 

The mathematical modeling of this problem takes the form of a weighted 
sum of terms, with the weights representing the probability of observing a 
member of each gender in a given sample. As an example, the expectation fi™,,.̂  
ofthe sample mean {imarket is 

M'marita = Ift/emafelmarta X \ljerrmle J + \Ttnmle\market X (Imafe J (1) 

where fyemaie represents the mean of measures in the female part ofthe popula­
tion, and Umafe represents the mean ofthe measures in the male part ofthe pop­
ulation. The JtyemafeUarAet represents the (unknown) proportion of females in the 
sample collected at the marketplace, and 7cmoie|marto= 1 - Jt/emafeUarw is the pro­
portion of males in this sample. Once we know the values for |xmofe and \iifemaie, we 
are able to calculate the estimated proportion of females (and males) for a given 
sample mean \L market-

Ifnot a simple sample statistic like the average, but the full distribution of 
a random variable is of interest, the weighted sum is taken across the different 
distributions ofthe unknown sample components. In that case, the generic dis­
crete mixture oftwo distributions becomes fix) = Tii/la: Ig = 1) + ̂ /"(x g = 2) with 
mixing components Tti =p(g = 1) and Ji2 =p(g = 2) = 1 - Jti. If more than two mix­
ing components are involved, we have 

nx)=tngf{x\g) (» 

with mixing proportions Kg and the constraint £ Kg = 1. The general form of a 
discrete mixture distribution is suitable for various types of random variables 
and has been used in various fields of research (see McLachlan & Peel, 2000). 
In the next section, an important special case, the mixture of normal distribu­
tions, is introduced. Then, a variety of mixture models for discrete random vari­
ables is introduced, such as scored responses of examinees to questionnaires or 

file:///ljerrmle
file:///Ttnmle/market


MKTURE DISTRIBUTION ITEM RESPONSE THEORY 15 

tests. This form of discrete mixture models is suitable for analyses of multi­
dimensional discrete data such as item response data, which is often found in 
psychometrics, educational measurement, and other social sciences. 

M i x t u r e s of C o n t i n u o u s R a n d o m V a r i a b l e s 

Recall the univariate normal distribution, which has the density 

4)(x;H,o) = ^ = - e x p 
2a2 

, 2 \ 

(3) 

with mean \i and standard deviation o. The sample mean M(x) = ±:Z,Xi is an 
unbiased estimate of n and the sample variance s2 (x) = - ^ X(x; - Af (ac)) is an 
unbiased estimate of a2. Figure 2.2 shows densities for different values of |J. and a. 

Mixtures of normal distributions are a statistical tool used in many areas. 
One of these areas is quantitative genetics, in which normal mixtures are used 
to detect heterogeneity of observations based on hidden stmcture (e.g., Gianola, 
Heringstad, & Odegaard, 2006). The term hidden structure from quantitative 
genetics is obviously related to the term latent in connection with variable or 
structure, which is commonly used in social science models. 

Four different normal densities 

VO 

d 

_5P © 

x 

d 

o 
d 

-2 0 
Random variable x 

Figure 2.2. The normal density for different values of p. and o. 
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Mixtures of Normal Distributions 

The general form of a discrete mixture of G normal distributions is 

G G 1 
f(x) = X ngf(x\g) = X Kg -7==— exp 

0=1 0=1 v Z n C g 2o| 
(4) 

with group-specific mean \ig, standard deviation Cg, and mixing proportions Kg. 
Figure 2.3 provides examples of marginal densities based on a mixture of only 
two normals. The different shapes are the result of a variation ofthe mixing pro­
portions Tti =p(gl) = 1 -p(g2) = l-7t2. This small set of examples shows that dis­
crete mixtures of normal distributions are quite flexible in adopting different 
shapes, even when only two mixture components are involved. 

Discrete mixture distributions can easily be specified for multidimensional 
random variables, that is, for a variable x = (xi, . . . , xd) with d real valued 
components. In that case, 

/x*)=5>« 
(27C> 

exp - - ( x - ^ J l i ^ x - p J 
id/2 

112' (5) 

is the d-dimensional mixture density of x. As before, the tig denote the mixing 
proportions, and jig is the mean vector, and ^ g is the variance-covariance 
matrix of mixing component g. Figure 2.4 shows a sample from a mixture oftwo 
bivariate normal distributions. 

p(g2)=0.1 p(g2)=0.2 p(g2)=0.4 

-2 0 2 
Random variable x 

P(g2)=0.6 

-2 0 2 
Random variable x 

-2 0 2 
Random variable x 

p(g2)=0.8 

- 2 0 2 
Random variable x 

p(g2)=0.9 

- 4 - 2 0 2 4 
Random variable x 

-2 0 2 
Random variable x 

F i g u r e 2.3. Marginal densities of mixtures of two normal densities with varying 
mixing proportions for two groups, g l and g2, with p(gl ) = 1 - p(g2). 
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Mixture of bivariate normals 

I 

- 2 

Independent X 

Figure 2.4. Mixture oftwo bivariate normal samples. 

The #-axis represents an independent variable, say, for example, the 
length of some micro-organism, and they-axis represents a dependent variable, 
for example, the CO2 consumption of these microorganisms. It can be seen that 
there are two subsamples identified, in which the two variables show some 
obvious relationship. The correlation between the independent and the depend­
ent variable is about 0.69 in both subsamples but is only -0.05 for the joint sam­
ple across the two mixture components. The two identified subsamples could, for 
example, represent microorganisms from different strains or something similar. 
Unmixing the two subsamples is crucial to understanding the data, because 
there is an almost linear relationship between the observed variables if calcu­
lated for the separate(d) samples. 

Wolfe (1970) described a method for estimating the parameters of multi­
variate normal mixture models. Unfortunately, the fact that mixture distribu­
tions are easily defined does not imply easy estimation ofthe model parameters 
(% £«> X*W... G (e.g., Marin, Mengersen, & Robert, 2005; McLachlan & Peel, 
2000). Real data rarely are as clearly identified as belonging to several separa­
ble populations; neither the location and dispersion of subpopulations nor the 
number of mixture components is known beforehand in most cases. 
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The estimation of parameters using mixture models, therefore, involves 
making decisions about the assumed structure ofthe mixture components as 
well as estimating a sequence of models and choosing between these candidate 
models based on considerations of parsimony and model-data fit. 

Estimation of Normal Mixture Models 

Mixture distribution models assume that the observations collected in a sample 
come from a finite number of different populations, whereas the information 
about each observation's parent population is missing because it was either not 
collected or it is not directly observable. The estimation of models that include 
unobserved variables is not straightforward because the collected data are miss­
ing a central piece of information, namely, information about the population 
from which each observation was drawn. 

Several algorithms for the estimation of model parameters can handle 
incomplete data, among these the expectation-maximization (EM) algorithm 
(Dempster, Laird, & Rubin, 1977) and related methods. The EM algorithm seems 
to be the method of choice for most large-scale apphcations of mixture or latent 
variable models (McLachlan & Peel, 2000). These algorithms greatly profit 
from the availability of fast computers because parameter estimates have to be 
updated over the course of many iterative steps. Bayesian approaches to estima­
tion, such as Markov chain Monte Carlo (MCMC) methods, have also been dis­
cussed and applied to the estimation of discrete mixture models (Marin et al., 
2005). However, the computational burden is even greater for MCMC methods, 
which are based on chains containing thousands of systematic draws from condi­
tional distributions given data and preliminary estimates. 

The central building blocks of the EM algorithm are outlined in the follow­
ing paragraphs. Assume that the d-dimensional random variable x is distributed 
according to the mixture normal density /(x) as given in Equation 2. Assume that 
this random variable was collected based on a sample of size JV, and that the 
observations are enumerated, so that they may be referred to as observation Xi 
to observation xN. If the data were completely observed, an additional variable 
would be available for each observation, which I denote by c in this chapter. If 
the c were observed, the vector (ci,. . . , c^) would contain the observed member­
ship of each observation to one of the g = 1 . . . G mixing components of 
Equation 2. The EM algorithm is based on an iterative method that maximizes 
the likelihood function ofthe complete (or better "completed") data, using each 
observed record that has been proportionally placed into each (unobserved) 
population based on preliminary parameter estimates. 

M i x t u r e s of D i s t r i b u t i o n s for D i s c r e t e O b s e r v e d V a r i a b l e s 

In social sciences, education, and psychology, observed variables are often dis­
crete, so that the possible outcomes can be enumerated and represented as a 
finite set of numbers or symbols. Examples are responses to math problems 
that are either correct or incorrect or, in some cases, are responses that receive 
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partial credit, so that a response scored as zero represents the least favorable 
solution (incorrect), a score of 1 represents a partially correct solution, and a 
score of 2 represents the completely correct solution. 

Models for discrete data exist in abundance. However, in their basic formu­
lation, they often do not provide means to detect hidden stmcture. Most models 
for discrete data were originally formulated in terms of probabilities modeled 
by functional families using transformations ofthe counts observed on the set 
of discrete dependent variables. These probabilistic models often contain only 
observed variables but can be extended to include hidden structure, or better, 
in the language of social sciences, to include latent variables (Goodman, 1974; 
Haberman, 1977; Lazarsfeld & Henry, 1968). These early developments have 
spurred research in different disciplines in the past 3 decades, with an increased 
level of research since 1990 on discrete mixture models in psychometrics and edu­
cational measurement (Kelderman & Macready, 1990; Mislevy & Verhelst, 1990; 
Rost, 1990). 

Item Response Data as Evidence of Underlying Skills 

Item response data are collected in standardized assessment situations in 
which a sample of examinees respond to a set (or to different but overlapping 
sets) of tasks, often referred to as items. Examinees respond by producing 
a recorded reaction to these items. A response can be bubbled in an answer 
sheet; by selecting one of a fixed nmnber of response options; or by writing a num­
ber, a word, a sentence, or longer text. Then, responses are typically scored, that 
is, classified into correct, incorrect, or partially correct (partial credit) scor­
ing categories. 

The set of observed responses from an examinee is viewed as evidence that 
relates to some underlying, not directly observable, attribute. For example, a stu­
dent's response to a series of 20 mixed number addition problems is considered a 
behavioral sample that can be used to draw inferences about the student's general 
skill in adding fractions and mixed numbers. Therefore, responses are viewed as 
indicators of indirectly observed skills or latent variables, rather than being 
directly identified with the ability to be measured. The theoretical advantage of 
this is well known: Latent variable models such as item response theory (IRT) 
state the probabihty of a response by an examinee to a given item in expHcit, and 
therefore falsifiable terms, whereas the classical test theory (CTT) model, which 
operates on sums of scored responses, does not make explicit assumptions about 
the response process. CTT assumes that the sum of scored responses is a mean­
ingful summary of student responses, whereas (parametric) IRT makes explicit 
mathematical assumptions relating the likelihood of item responses to examinee 
ability. This reliance of IRT models on a specific functional form may seem like an 
advantage for CTT (e.g., Hambleton & Jones, 1993); however, not making exphcit 
assumptions does not imply the absence of implicit assumptions. For example, let 
the score Xv of examinee v on a test be defined as 

X=X*W (6) 
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where xVi = 1 if examinee v responds correctly to item i and zero otherwise. If 
we assume that this is a meaningful summary of student ability, as it relates 
to responding to items (xt , . . . Xj), then what follows for the response to a new 
item x/+i belonging to the same domain? Let us say we tested an examinee on 
19 mixed number additions and we want to express our subjective probabil­
ity how the student will perform on mixed number addition Item 20. Should 
we assume that the observed frequency of students responding correctly to 
Item 20 depends in some systematic way on the sum of the first 19 items 
Xv\i9 = X^i*"' ? An implicit assumption used in test construction is that the 
response to any item of the test and the total score should be positively cor­
related. We often use the point bi-serial correlation to assess this relation­
ship, and we discard or eliminate items from a scale if they do not correlate 
sufficiently with the overall score. Behind this stands the implicit assump­
tion that the expected response E(xVi) and the total score X„should be posi­
tively related. 

A slightly stronger assumption is that the probability of a positive response 
(recall that E(xvi) = P(xDi = 1) for binary, that is, x e (0,1), response variables) 
increases strictly with the total score Xv or even the remainder score Xv -«„;. With 
this, we are just one assumption away from the Rasch model (Rasch, 1980), 
namely, the assumption that the score X„ is sufficient to estimate the examinee's 
ability (Molenaar, 1995). The Rasch model defines the probability of an observed 
vector of responses as 

The 0„ represents examinee v's outcome on a real-valued skill variable in 
the Rasch model, the fr represent the item difficulties in the Rasch model. The 
marginal probability ofthe responses is then 

P(xu...xI)=lIlPi(xi\B,fr)mi\)de, (8) 

where ty(Q;f\) denotes the distribution (with parameters fi) of the ability vari­
able 0. The sufficiency ofthe unweighted score X yields P(x1,. . . ,xI \X, 0, JJ) = 
P(xi, . . . ,X/|X;p),or, 

n^(*i|e.PO = nftel*'fc)*>(*|e) (9) 

i i 

for the Rasch model (e.g., von Davier, Rost & Carstensen, 2007). Thus, inte­
grating over 0 eliminates this parameter and we have 

p(x1,...x/;p) = J9n^(^l^^)^(^|e)^(e^) r f 0 = n p (^ l x ' P ' )^ (^ ) - do) 
i i 

The sufficiency of the total score X in the Rasch model shows that the 
probabilities of responses Pfol-X, ft) fall into a set of/ + 1 equivalency classes 
for this model, because Z e 10,1,2,.. . , 7) and for each of these X, there are dif-
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ferent Pfyc \X). Equation 4 shows that the marginal probability of a response 
pattern can be written without the latent ability variable 0. This is frequently 
used for estimating item parameters in the Rasch model and is referred to as 
conditional maximum likelihood estimation. Conditional estimation uses (9) 
and maximizes the likelihood function 

L(p) = f;inP(x1,...x /;P). (11) 
11=1 

This is particularly useful because it avoids systematic bias that occurs 
when estimating ability 0 and item parameters p jointly (Haberman, 1977; 
Kiefer & Wolfowitz, 1956), and it yields consistent estimates without assum­
ing a specific ability distribution (|)(0; fj). If the test score X is defined as a 
weighted sum 

Z „ = X a ^ (12) 
!=1 

we arrive at a model that is commonly known as the two-parameter logistic 
(2PL) IRT model (Lord & Novick, 1968). Then, we have 

D/ io \ O D ^ \ a \ A exp^oc^Q.-P,)) n „ . 

p(x„1,...,x„ / |0„)=n^(^ie,)=n1+exp(a i (ec_p ! ) ) a3) 
with e„ and fr as defined above and with an additional discrimination parame­
ter a;. If the oc; represent a limited number of prespecified integer (or rational 
weights) weights, conditional estimation is still possible (Verhelst & Glas, 1995). 
If the ^ are estimated model parameters, conditional estimation can no longer 
be used. In this case, an ability distribution <|)(0; T\ ) (either continuous or discrete) 
for 0 is often assumed for estimation. Joint estimation is also possible, but it 
leads to the abovementioned bias and should therefore not be considered further. 
Therefore, using (10) to maximize 

L(p,a,;ti) = £lnP(x„i,...,x„/;p,d,;ti) (14) 
u = l 

with respect to item parameters p, a and with respect to distribution param­
eters fj is the method of choice (marginal maximum likelihood, MML; Bock 
& Aitkin, 1981) utilized in a number of modern implementations of IRT 
estimation. 

The arguments about sufficiency and monotonicity can be easily general­
ized to response variables x* € 10,1,2, . . . , mi), that is, response variables with 
more than two ordinal categories (Andrich, 1982; Masters, 1982; Rost, 1988) 
arriving at a Rasch model for polytomous ordinal data or the generalized par­
tial credit model (Muraki, 1992). 

One may ask why we should make these stronger assumptions and use the 
Rasch model or more general IRT models instead of modeling based on sums of 
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item responses. Some of the advantages of using a model-based approach for 
item response data are as follows: 

• Testable assumptions are a good thing; for example, if items do not work 
as expected given model assumptions, it may mean that responding cor­
rectly to an item may not be indicative of a high value on the underlying 
skill. 

• A model-based approach for responses to individual items allows for 
much more complex test designs, including multiple blocks of items and 
linkages across multiple test forms, than do designs supported by CTT 
and score-based equating methods. 

• Models that assume a set of variables underlying item responses can eas­
ily be extended to approaches in which each response is indicative of more 
than one skill variable, that is, each observed indicator may be indicative 
of one or more underlying skills. A similar approach based on sums of 
item scores would reuse the same item score in multiple subscores and 
would therefore lead to artifacts. 

• Models that assume one underlying skill dimension can be compared 
with more complex, as well as less complex, models in terms of statisti­
cal checks of model-data fit. As an example, specific model diagnostics 
(Glas; 2007; Molenaar, 1983) can be designed that are indicative of items 
or groups of items that perform poorly with respect to discriminating 
between high- and low-skilled examinees. 

The last two bulleted points address extensions found in discrete mixture 
models, some of which are presented in this chapter. This section introduced 
the Rasch model and the 2PL model as examples of item response models for 
discrete observed data. In the next section, I introduce a different model for this 
type of data, the latent class analysis (LCA; Lazarsfeld & Henry, 1968), which 
can be viewed as the basic framework for all mixture models for discrete item 
response data. Most, ifnot all, discrete mixture models for item response data 
can be understood in terms of extending the basic model used in LCA. 

Latent Class Analysis 

Latent class models, like IRT models, relate a set of item responses to an 
unobserved variable. Unlike IRT models, the LCA does not assume a real-
valued continuous latent variable. Instead, latent class models assume that 
the observed item responses are independent given a latent nominal vari­
able. This also produces equivalency classes, much like the Rasch model and 
some other IRT models do. A typical setup includes, as before, xv = (xv i , . . . , xvI), 
the observed item responses, whereas c„ is the unobserved class membership 
of examinee v. In contrast to the discrete c„ used in LCA, the IRT models pre­
sented in the previous section specify a continuous Qv that represents the 
unobserved skill or proficiency. The basic latent class model follows from a 
set of three assumptions, some of which match assumptions commonly used 
in IRT: 
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1. Response probabilities depend on class membership c: Pi(x I c„) and 
P;(x|cJ can, and will commonly, be different if c„ * cw. This assumption 
is weaker than in IRT, because IRT assumes a real-valued 0 and mono­
tonicity in 0. 

2. Local independence given class membership c:P(x1,...,x/|c) = n i = i 
Pt (XJ|C). This is identical to the assumption used in IRT. 

3. Class memberships are mutually exclusive and exhaustive, that is, each 
examinee i; falls into one, and only one, latent class c = c(i;) e ( 1 , . . . , C}. 
Similarly, in IRT each examinee is characterized by exactly one real-
valued 0 = 0(i;). 

These assumptions make the LCA a discrete mixture distribution model 
because it follows from this set of three assumptions that the marginal proba­
bility of a response pattern is given by 

P(x1,...,xI) = ^n c f lP i (x i \ c ) (15) 

with unknown class sizes (or mixing proportions) 3tc =p(c) (see Formann, 1992). 
As an illustration, Figure 2.5 shows three class-specific profiles of condi­

tional response probabilities Pi(x = lie) for classes c = 1,2,3. Let us assume that 
each class is of sizep(c) = 1/3, and each item has a different probability in each 
class, so all classes have different profiles of conditional response probabilities. 

The LCA is a very flexible model because the number of classes C is not spec­
ified a priori and is often determined by some measure of model-data fit used to 
compare the fit of LCA models with increasing numbers of classes. This, how­
ever, is also a weakness ofthe LCA. With the addition of classes to the model, the 

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 

F i g u r e 2.5. Class profiles of item difficulties for three latent classes and six items. 
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fit between model predictions and observed data will always improve, which may 
result in an LCA solution that is not well suited to describe the observed variables 
dependencies in a succinct way. In addition, the increase in number of classes 
leads to a substantial increase in the number of parameters to be estimated. For 
more details about applications of LCA, see the volumes by Langeheine and Rost 
(1988), Rost and Langeheine (1997), and Hagenaars and McCutcheon (2002), 
as well as the chapter by Dayton and Macready (2007). Often, confirmatory 
approaches to LCA, that is, approaches constraining the number of classes and/ 
or prescribing class-specific patterns of response probabilities, seem more ade­
quate than unconstrained LCA. Theories about the assessed domain coupled 
with constmct-driven rational test constmction will lead to hypotheses about 
how groups or latent classes of examinees should differ in their responses to 
the observed variables. These theories can then be translated in an expectation 
about the number of classes and the expected profile of response probabilities 
within classes. Some of these more structured approaches based on LCA can be 
viewed as models including latent structures. These latent stmcture models 
share some interesting similarities with IRT models, and an important special 
case of constrained LCA is discussed in the next section. 

Located Latent Class Models 

The LCA model in its original form does not constrain conditional response prob­
abilities. However, there might be good reason to assume that latent classes are 
ordered with respect to the P/x I c). More specifically, that the class indices or 
labels can be rearranged so that for all pairs o k e 1 . . . C we have 

P ( x - l | c ) > P ( x = l|A)forallJe{l,...,/}. (16) 

This condition implies that one may compare classes in terms of their likeli­
hood of endorsing the items, or may choose higher rather than lower response cat­
egories on the set of items if ordinal, polytomous items are considered. Ordered 
latent classes imply something that comes strikingly close to the monotonicity 
assumption in IRT. Moreover, ordered latent class models are often conveniently 
written as located latent class models (Formann, 1992; Uebersax, 1993). In the 
located latent class model, a finite number of different (ability) levels, the loca­
tions in the model, pc, and item threshold difficulties «; = ( (%, . . . , otim) are used 
to define the conditional probabilities given latent class. If a logistic form is used, 
this can be written as 

P,(X = x|c)= ^ ( ' P ' - g " ) . (17) 
l + Xexp(yPc-a^) 

y=l 

Equation 17 is suitable for both dichotomous (0,1) response variables x as 
well as for polytomous, ordered response variables x € (0, . . . , m). Located 
latent class models and IRT models may yield identical parameter estimates 
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while the necessary number of ordered ability levels is rather small (De Leeuw 
& Verhelst, 1986; Lindsay, Clogg, & Grego, 1991). For such an application in 
which a located latent class model is used to mimic an IRT model, the spacing of 
ability levels (Pi, . . . , Pc) and the class sizes ( i t i , . . . , Tie) can both be viewed as 
model parameters (see Heinen, 1996), even though it is often convenient to esti­
mate only one type of parameter. If the pc are constants and the nc are estimated, 
this approach to estimating latent variable models is commonly referred to as 
seminonparametric estimation (Heinen, 1996) because the Pc are not considered 
model parameters but a priori specified constants. 

Many common IRT estimation methods based on the implementation of mar­
ginal maximum likelihood (MML) methods use seminonparametric estimation 
routinely for approximating the continuous marginal ability distribution with dis­
crete abihty levels. Using real data, Haberman (2005), as well as Formann (2007), 
have shown that IRT-type located latent class models can be quite competitive in 
terms of model-data fit. Schmitt, Metha, Aggen, Kubarych, and Neale (2006) pre­
sented a simulation study to demonstrate how to detect nonnormal ability distri­
butions using semi-nonparametric methods with located latent class models. 

Mixture Distribution IRT Models 

IRT models assume that the same item parameter set and the same ability dis­
tribution hold for all examinees. What if that is not plausible? An example in 
which different groups may show tendencies to respond in different ways to the 
test items is vertical linking across grades, because students in different grades 
may differ more than just in terms of ability levels. Opportunities to learn and 
repeat the material covered in the following grade may put more emphasis 
on some topics than others. Assessments administered across different school 
types, or assessments given to students from different training programs, may 
show that some areas covered by certain training programs lead to systemati­
cally different tendencies to respond positively to these programs. Test-taking 
training may change the performance of students on certain item types or the 
performance on items that can be solved using trainable strategies. 

Rost (1990), Mislevy and Verhelst (1990), and Kelderman and Macready 
(1990) have studied situations like the ones listed previously using mixture distri­
bution generalizations of IRT models. In mixture IRT, the conditional response 
probabilities depend on the population (observed group or latent class) an exami­
nee belongs to in addition to the latent proficiency variable. In this case, the mar­
ginal probabihty of a response vector is 

c 
I 
c=l 

P(x1,...xJ) = f 7iJenP(^|0,c)^(0)d0 (18) 

with class-dependent ability distribution <|>c(0) = <|)(0; 1̂ )—<|> is often chosen to 
represent a general family of distributions, of which the same or different 
instantiations are chosen to hold in the different mixture components—and 
class-dependent conditional response probabilities Pi(Xi 10, c) = Pfe 10, p j . The 
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latter class dependency indicates that the items may have different parameters 
frc in different classes, and therefore function differently in different classes. If 
class dependency is found for all items, Rost and von Davier (1993) pointed out 
that different skills are measured in the different populations with (seemingly) 
the same set of items. However, linking subsets of items across subpopulations is 
feasible. Moreover, linking is required if a common scale across subpopulations 
is to be established (von Davier & Rost, 2007; von Davier & Yamamoto, 2004a). 

Applications of Mixture IRT 

In cognitive psychology, mixture IRT models have found application in a variety 
of settings (Embretson, 2007). Work on the identification of strategy groups dates 
back to the origins of mixture IRT (Kelderman & Macready, 1990; Mislevy & 
Verhelst, 1990; Rost, 1990). The consequences of differential validity, moderated 
by latent class membership, can already be found in work in which a mixture of 
an independence class (no ability variation) and a class that follows common IRT 
assumptions has been developed (Yamamoto, 1989). In Yamamoto's HYBRID 
model, the class specific ability distributions <j) differ substantially: Whereas in 
the IRT class a normal distribution may be assumed to hold, the independence 
class may be represented as a class with a degenerate ability distribution, in 
which the variance has been set to zero. 

In noncognitive assessment, work on coping styles (von Davier & Rost, 1996), 
the faking of responses by job applicants (Eid & Rauber, 2000; Eid & Zickar, 2007; 
Zickar, Gibby, & Robie, 2004), and differences between response sets of examinees 
on personality questionnaires (Rost, Carstensen, & von Davier, 1999) have used 
mixture IRT models. 

A test-speededness condition often leads to a change in response strategy 
when examinees mn out of time while responding to items on a test. Mixture mod­
els for analyzing speeded tests have been developed by Yamamoto and Everson 
(1997) and applied to different testing programs by Yamamoto and Everson 
(1997), Boughton and Yamamoto (2007), and Bolt, Cohen, and Wollack (2002). 

Developmental processes are often conceptualized in terms of distinguish­
able stages, characterized by what learners can or cannot do at these different 
stages. Wilson (1989) and Draney and Wilson (2007) have described the Saltus 
model, a model that can be used to implement these stage-like developmental 
assumptions. Technically, the Saltus model is a constrained mixture distribu­
tion Rasch model and, in this sense, a special case of the mixed Rasch model 
(Rost, 1990). The Saltus model imposes a structure on the overall differences 
between latent class dependent item difficulties. More specifically, it adds the 
Saltus parameter xc to each ofthe class independent item parameters, that is, 

aiC=xc+dr (19) 

The class-dependent item difficulty for item i in class c in the Saltus model is 
additive in the Saltus parameter xc and the cross class item difficulty &;. 

The assessment of whether tests are unidimensional or multidimensional 
represents another field in which mixture IRT has been applied. Rost and von 
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Davier (1995) suggested using the mixed Rasch model for assessing the fit of 
the Rasch model. The assessment of multidimensionality using mixture IRT is 
a topic covered by Rijmen and De Boeck (2003). The basic question is whether a 
test is unidimensional or whether there are additional latent student variables 
to be considered. As Rijmen and De Boeck (2003) pointed out, if additional vari­
ables beyond the main ability need to be modeled to fit the observed data, should 
those additional student variables be conceptualized as discrete (latent class) 
variables or as continuous (latent trait) variables? This question can be addressed 
by comparing the model-data fit of a (confirmatory) multidimensional IRT 
model assuming multiple ability factors with a mixture IRT model that assumes 
one continuous ability and multiple classes with class-specific item parameters. 
The next two sections present an approach in which comparisons of this sort— 
for example, between mixture IRT models and confirmatory, multidimensional 
IRT—can be made. 

Diagnostic Models and Mixture IRT Models 

Diagnostic modeling of student responses aims at reporting skill profiles of 
students or groups of students. Skill profiles consist of several, often discrete, 
skill variables, which are conceptualized as discrete latent variables in diagnos­
tic models. Multidimensional IRT (MIRT; Reckase, 1985) models and diagnostic 
models are both used to analyze data assuming multiple student variables. 
MIRT assumes continuous latent variables and is an extension of unidimen­
sional IRT, whereas diagnostic models may be viewed as an extension of located 
latent class models. In this sense, diagnostic models can be understood as mul­
tiple classification latent class models (e.g., Haberman, 1977; Haertel, 1989; 
Maris, 1999), as well as multidimensional discrete IRT models (e.g., Heinen, 
1996; Kelderman & Rijkes, 1994). The rule space approach (Tatsuoka, 1983) 
can be seen as another base of diagnostic modeling. However, rule space is not 
a probabilistic approach, unlike LCA and related methods. Rule space deter­
mines ideal response patterns of students with certain skill profiles in an 
expert-guided and prescriptive way, and then classifies students according to 
these ideal patterns. 

Diagnostic models usually contain a design matrix, commonly referred 
to as a Q-matrix, relating items to (multiple) skills. The idea behind using 
design matrices is confirmatory; a model of student skills and how these 
skills relate to students' observed item responses is developed and then put 
to the test. A test of the diagnostic model usually consists of comparing the 
fit ofthe diagnostic model with a more parsimonious model (e.g., a unidimen­
sional IRT model) and checking whether model predictions based on the multi­
dimensional diagnostic models improve on the predictions ofthe unidimensional 
approach. 

Table 2.2 provides two examples of Q-matrices with two skills and seven 
items, which should be considered a textbook example as the number of items tap­
ping into each ofthe skills is rather small and should be at least two to three times 
larger for any real application. Model 1 assumes simple stmcture (or between-
item multidimensionality; see Adams & Wu, 2007), and Model 2 assumes within-
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Table 2.2. Examples of Between Item and Within Item Multidimensionality 
as Represented in Different Q-Matrices 

I teml 
Item 2 
ItemS 
Item 4 
Item 5 
Item 6 
Item? 

Skill 1 

1 
1 
1 
0 
0 
0 
0 

Q-matrix 1 

Skill 2 

0 
0 
0 
1 
1 
1 
1 

Skill 1 

1 
1 
1 
0 
0 
0 
1 

Q-•matrix 2 

Skill 2 

0 
0 

item multidimensionality for Items 3 and 7. The Q-matrix entries are either zero 
or one; qik = 0 denotes that skill k is not required for item i and qu, = 1 denotes that 
skill k is required for item i. 

Junker and Sijtsma (2001) described a framework of disjunctive and conjunc­
tive diagnostic models and discussed the relationship of this approach to nonpara-
metric IRT models. DiBello, Roussos, and Stout (2007) gave an overview of some 
ofthe models commonly referred to as diagnostic models. DiBello et al. (2007) 
listed the linear logistic test model (LLTM; Fischer, 1973), a constrained version 
ofthe Rasch model, as a diagnostic model. Note, however, that the LLTM does not 
contain multiple student skill variables but contains design matrices that pre­
scribe how item difficulties relate to a set of underlying item component parame­
ters. In contrast to componential IRT models (Embretson, 1990) and other 
multidimensional IRT models, the LLTM does not decompose person ability vari­
ables into multiple components. Haberman and von Davier (2007) discussed some 
important cautionary considerations when using diagnostic models. Some limita­
tions, such as the relationship between the number of items and the number of 
distinguishable skills, as well as the ability to distinguish between highly cor­
related skills, are often neglected. Von Davier, DiBello, and Yamamoto (2006) 
gave an overview of selected diagnostic models for reporting profiles of skills. 
The extension ofthe general diagnostic model (GDM) to a mixture distribution 
IRT type model is covered in the next section. 

A Mixture General Diagnostic Model 

Von Davier and Yamamoto (2004b) and von Davier (2005) presented a frame­
work for a GDM. Von Davier (2005) developed the partial credit version ofthe 
GDM and conducted a parameter recovery study based on this model. The GDM 
was extended to a mixture GDM (M-GDM; von Davier, 2007; von Davier & Rost, 
2007; von Davier & Yamamoto, 2007) and contains 2PL and generalized partial 
credit model (GPCM; Muraki, 1992) IRT as well as multidimensional versions of 
these IRT models (2PL and GPCM MIRT models), (multiple classification) latent 
class models, located latent class models, and a compensatory version of the 
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reparameterized unified model as special cases. Hence, it shares (depending on 
what types of latent skill variables are used) many important features with 
MIRT and with multiple classification latent class models. The GDM provides 
a common framework for several types of models, and the general form of the 
GDM can be adapted to what is needed: IRT, latent class, mixture IRT, MIRT, 
and diagnostic models with dichotomous mastery/nonmastery skills or ordinal 
skills. Model-data fit diagnostics are readily available using tools from IRT and 
categorical data analysis. The mixture and nonmixture GDM is estimated using 
the EM algorithm in the software package mdltm1 (von Davier, 2005). In contrast, 
many previous implementations of diagnostic models used computationally 
much more costly MCMC methods. More important, the common framework of 
discrete and continuous latent traits used in the GDM family of models facili­
tates comparisons between models from seemingly distinct families of latent 
trait models. 

The mixture GDM is defined using the following setup: Assume K discrete 
skills, and a .K-dimensional latent skill variable a = (d, . . . a^) with compo­
nents ak e {so,..., sm}k . The S/ are real-valued skill levels and are chosen by the 
user. Common choices for estimating an IRT model within the GDM framework 
are K= 1 and 1(1) = 40 and equally spaced skill levels with So = -4.0 and S40 = +4.0. 
A common choice for diagnostic modeling is 1 < k < K, with iiT between 2 and 10, 
and ak e {-1.0, +1.0} for mastery/nonmastery skills or a* € {-1.0, 0.0, +1.01 for 
skills with three levels. Extensions to four or more levels are straightforward. 
The probability of a response x to a polytomous, ordinal item i in class c for an 
examinee with skill pattern ( d , . . . , a^) is then 

fl(j|c,ai,...,ag)=j ^ m i —r^TT^ ^ T ( 2 0 ) 
1 + I J exp(SLi P«+yTLk Wikfl* 

with x e (0, . . . , mj, and with slope parameters yik and threshold parameters 
Pi*. The qik represent the Q-matrix entries and usually will take on only the val­
ues zero or one, that is, qik e {0,1}. The mixture GDM assumes local independ­
ence, like IRT and LCA do, and mutually exclusive and exhaustive classes. 
Thus, the marginal probability of a response pattern is 

P(xi,...Xi) = X7tcX-"Xp(ai...aic|c)JlP(xj|c,ai,...,ais:) (21) 
c al aK i=l 

where/7(ai,... axle) is the probability of skill pattern (au . . . , aK) in class c, and 
the nc are the class sizes as defined above. Von Davier (2005; 2007) reported on 
a successful parameter recovery study and an application of the GDM to lan­
guage testing using data from a computer-based English language test. Xu and 

Tor availability and licensing of the mdltm software for research purposes, please contact 
mvondavier@ets.org or dlembeck@ets.org. 

mailto:mvondavier@ets.org
mailto:dlembeck@ets.org
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von Davier (2006) described successful parameter recovery when estimating 
the GDM using sparse samples of item responses with conditions containing up 
to 50% missing data. For common IRT models, the GDM provided a means to 
generate MML estimates using semi non-parametric estimation (Heinen, 1996). 
Parameters estimated were found to be virtually identical to those obtained from 
BILOG for the 2PL, and those obtained using conditional maximum likelihood 
estimates when estimating the dichotomous or polytomous Rasch model. Xu and 
von Davier (2006) described application ofthe GDM and a multiple group version 
of the GDM to data from the National Assessment of Educational Progress. Xu 
and von Davier (2007) developed a log-linear model for the latent skill profile dis-
tributionpfoi,..., ak), and von Davier and Rost (2007), von Davier (2007), as well 
as von Davier and Yamamoto (2007) described the M-GDM. 

Outlook and Summary 

Discrete mixture distribution models for item response data are a common staple 
of categorical data analysis. They come in many forms—for example, LCA, latent 
stmcture model, discrete latent trait models, mixture IRT and mixed Rasch mod­
els, and multidimensional extensions of these. In their edited volume, von Davier 
and Carstensen (2007) collected 22 contributions by an intemational group of 
researchers on model extensions and applications that grew out of mixture distri­
bution Rasch models, multidimensional Rasch models, and related approaches. 
Mixture distribution models for item response data can be used to estimate and 
test IRT models and allow for the extension of IRT models by means of effects of 
unobserved and observed grouping variables and covariates. The edited volume 
by De Boeck and Wilson (2004), as well as the one by Rao and Sinharay (2006), 
contains several chapters about these types of discrete mixture models. The GDM 
(von Davier, 2005, 2007) places diagnostic skill profile approaches into a 
modeling framework that allows for direct comparisons between diagnostic 
models expressed as mixture models of the latent class type to models with 
continuous ability variables such as IRT-based mixture and nonmixture mod­
els. Haberman (2005), Schmitt et al. (2006), Formann (2007), and Vermunt 
(2001) have provided examples in which latent class type IRT models are quite 
competitive in terms of model-data fit when compared with models with con­
tinuous latent variables. 

This chapter provided a short survey of mixture models for continuous 
variables and discrete item response data. Given the vast amount of research 
over more than a century, this chapter can only deliver coverage in certain 
areas. If this chapter was successful in an attempt to raise interest in this 
important area of psychometric modeling, then the reader is further encour­
aged to pick up some ofthe books on the topic, such as the one on mixture mod­
els for continuous data by McLachlan and Peel (2000), or the edited volumes on 
mixture and multivariate Rasch models (von Davier & Carstensen, 2007), or 
the conference proceedings on "Mixture Models in Latent Variable Research" 
(Hancock & Samuelsen, 2007). The study and application of mixture distribu­
tion models for item response data can lead to interesting discoveries of hidden 
structure in data from educational and psychological assessments. 
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Diagnostic assessments have long been used in education and psychology, and 
recent advances in latent class modeling could result in significant improve­
ments in their statistical performance and, not coincidentally, in their availabil­
ity to a wider range of applications in terms of both practitioners and subjects. 
This chapter presents the theory and practice of these new psychometric models 
with an emphasis on practical implementation. To this end, a broadly conceived 
implementation framework is presented with detailed practical advice and two 
detailed example applications from psychology and education. 

The implementation of any assessment program is a complicated affair; if 
new psychometric modeling advances are to have a positive effect, it is impor­
tant for practitioners to see how these new models integrate into the entire 
implementation process. Although these new models present new challenges and 
obstacles for practical implementation, they also offer the potential for many sig­
nificant advantages that have brought this research to the precipice of practical 
implementation in operational assessment programs. 

In this chapter, we first present the psychometric terminology relevant to 
parametric latent class models based on item response theory (IRT). Next, we 
present a general organizing scheme for the diagnostic assessment implemen­
tation process, which we conceive as involving six components: the assessment 
purpose, the nature ofthe skills, the assessment tasks, the psychometric model, 
model estimation, and score reporting. We describe each component separately, 
noting that the separate delineations mainly provide a convenient, coherent 
vehicle for discussion. In practice the process is not really compartmentalized— 
different components naturally overlap and interact with each other. Following 
the general description ofthe implementation process, we present its application 
to two very different examples in education and psychology. Finally, we offer 
concluding remarks, pointing out advantages and disadvantages of using these 
new models and describing what we see as the next steps on the road to opera­
tional implementation. 
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Terminology 

We use the term skill to refer to an unobservable characteristic or attribute of 
an individual, and we assume there are several such skills of interest for a given 
diagnostic setting. The term skill is used with the understanding that the unob­
servable attribute of interest could also refer to other characteristics, such as 
acquired knowledge or the presence of a personality trait. We also assume that 
it is desired to classify or diagnose each individual into two or more ordered cat­
egories on each skill or attribute—for example, whether a student exceeds, 
meets, or is below state standards on an inferencing skill in English language 
arts. The term skill profile is used to refer to the vector that presents an individ­
ual's skill category for each ofthe skills. For example, for a diagnosis of mastery 
versus nonmastery on each of two skills, there are four possible skill profiles: 
nonmaster of first, nonmaster of second; nonmaster of first, master of second; 
master of first, nonmaster of second; and master of first, master of second. For 
convenience, we use the term examinees to refer to individuals who are to be 
assessed, although the setting need not be an examination. 

Diagnosing examinees by classifying them into ordered categories on a 
(generally unordered) set of skills can be accomplished by using latent class 
models while introducing skill-based restrictions through parametric item 
response functions (IRFs), similar to those used in IRT for continuous latent 
traits. Thus, we refer to these models as IRT-based parametric latent class 
models. These models allow the advantages of latent class models to be inte­
grated with those of parametric IRT. When the diagnostic goal is to classify 
examinees into skill-based categories (as contrasted with placing examinees on 
a continuous scale for each skill), latent class models have the advantage of 
directly addressing the classification goal. Moreover, for latent class models 
that use skill-based parametric IRFs, each latent class is intrinsically linked to 
a specific examinee skill profile, estimable parameters describe the quality of 
the diagnostic instrument and that ofthe skill-based classifications, and a vari­
ety of model-checking approaches exist for parametric IRT models. In this 
chapter, these advantages are discussed in more detail and demonstrated with 
two applications. 

To make the scope manageable, the rest of the chapter is restricted to 
latent class models with two classes, as well as to instruments composed of 
dichotomously scored items. However, the general principles presented here 
are equally applicable to polytomously scored items (or other such tasks) and to 
latent class models with more than two classes, as well as to continuous latent 
trait models (e.g., DiBello, Roussos, & Stout, 2007). 

General Framework for the Diagnostic 
Assessment Implementation Process 

As noted by Junker (1999), the challenges of designing a diagnostic assessment 
are "how one wants to frame inferences about students, what data one needs to 
see, how one arranges situations to get the pertinent data, and how one justifies 
reasoning from the data to inferences about the student" (p. 4). This recognition 
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of assessment design as a process of reasoning from evidence was summarized 
by Pellegrino, Chudowsky, and Glaser (2001) as the assessment triangle: cogni­
tion, observation, and interpretation. The evidence-centered design (ECD) 
paradigm, developed by Mislevy, Almond, and their colleagues (e.g., Mislevy, 
Steinberg, & Almond, 2003), frames that recognition into a systematic and prac­
tical approach to assessment design. In this section, we adapt and augment the 
ECD paradigm to describe a framework for the entire implementation process 
for diagnostic assessment, elaborating on practical aspects of cognitively based 
assessment design and also going beyond design to illuminate practical issues 
in regard to estimation and score reporting. 

The diagnostic assessment implementation process is conceptualized as 
involving six components: 

1. description of assessment purpose; 
2. description of latent attributes of diagnostic interest (skills space); 
3. development and analysis of assessment tasks (dichotomous items); 
4. specification of a psychometric model linking performance to latent 

skills; 
5. estimation of model parameters and evaluation ofthe results; and 
6. development of systems for reporting assessment results to examinees, 

teachers, and others. 

As we detail next, the components of a successful implementation process 
are not necessarily as sequential and compartmentalized as idealized in the pre­
vious section. Although the idealization is useful as an organizing framework, it 
is important to note that a successful implementation process generally requires 
considerable interaction and feedback between the components and demands 
close collaboration among all who are involved in the process, such as, users, test 
designers, content experts, cognitive psychologists, and psychometricians. 

Assessment Purpose 

The purpose of the assessment should be clearly delineated, and this purpose 
has strong implications for Component 1, the description ofthe latent attribute 
space. For example, if the diagnostic purpose is to classify examinees in terms of 
discrete ordered categories of competency on a selected set of multiple skills, 
a substantive explication of what this "competency" means would seem to be 
required. A specific example of this is the typical standard setting process that 
is conducted for state testing programs in the United States (Cizek, Bunch, & 
Koons, 2004), in which there are only a small number of discrete classification 
levels on each skill. However, if the purpose ofthe assessment is a more tradi­
tional ranking of examinees along a broad general competency scale, then an 
appropriate skill space selection would seem to be a single continuous scale. In 
this chapter, our focus is on latent class models, so we are concerned with set­
tings like state standards testing, in which the diagnostic goal is classification 
to a small number of ordered discrete levels on each skill. 

The determination of assessment purpose also interacts with Component 3, 
choosing tasks that provide appropriate information about skills. In particular, 
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the diagnostic purpose may be targeted to making predictions about real-life 
settings that involve solving problems requiring complex combinations of skills. 
In such cases, it may be helpful to use assessment tasks that individually 
involve two or more skills, an advantage ofthe models that are the focus here. 
Also, the number and type of skill mastery categories can affect the types of 
tasks. It may be helpful to have tasks directed not only to particular skills but 
also to particular difficulty levels ofthe skills as appropriate for the prescribed 
categories in the assessment purpose. 

In designing an effective diagnostic assessment, satisfying the assessment 
purpose is the prime motivation and, thus, should be accomplished with care. 
However, in many applications of complex diagnostic models in the literature, 
skills diagnosis is conducted as a post-hoc analysis (called retrofitting), usually 
as a demonstration of a new statistical model or method or as an attempt to 
extract richer information than called for by the original assessment design. In 
such cases, skills diagnosis essentially becomes a new additional purpose for 
the assessment instrument. Though the instrument has already been designed 
in such cases, delineating the assessment purpose is still important because it 
affects the selection ofthe skills space, choice ofthe psychometric model, analy­
sis of the given tasks, choice of model fit evaluation method, and the nature of 
the score reports. 

Thus, there are two kinds of practical skills diagnostic settings: (a) analysis 
of existing assessment data using more complex models to extract richer infor­
mation than provided by unidimensional analyses and (b) designing a test from 
the start for a skills diagnostic purpose. One good example of a study in which 
the consideration of assessment purpose preceded and motivated the discussion 
of the development of a skills diagnosis implementation procedure is that of 
Klein, Birenbaum, Standiford, and Tatsuoka (1981), who investigated the diag­
nosis of student errors in math problems involving the addition and subtraction 
of fractions. However, most of the extant examples are of the first type, as are 
both ofthe examples we elaborate on in the following sections. 

Description of Attribute Space 

As mentioned earlier, the assessment purpose leads naturally to the question 
of what is to be assessed about the test takers—what proficiencies are involved 
and what types of inferences are desired. The second component in our imple­
mentation process thus requires a detailed formulation of the skills and other 
attributes that will be measured to accomplish the test purpose. In this step, a 
detailed representation ofthe skills or attributes space is developed in light of 
the purpose and based on cognitive science, educational psychology, measure­
ment, and relevant substantive literature. Often such literature will lead to 
multiple representations to be considered before a selection is made. In general 
this component of the implementation process considers how many and what 
kinds of skills or attributes are involved, at what level(s) of difficulty, and in 
what form of interaction. All of these issues will typically become more refined 
on the basis of a detailed analysis ofthe tasks, so a detailed discussion of each 
is deferred until the next section. 
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It is also important to keep in mind how the skills interact with each other 
in terms of correlational or ordinal relationships. For example, mastery of one 
skill might be known to occur only when another skill has first been mastered. 
Also, some skill pairs may tend to be more positively correlated than others. 
Delineating this information is clearly helpful for more effective implementa­
tion of the task development and analysis component of the implementation 
process, as discussed next. 

Development and Analysis of Assessment Tasks 

Logically, considering assessments as systems for reasoning about mental 
capabilities according to evidence from tasks administered to examinees, the 
choice of tasks should be based primarily on a consideration ofthe amount and 
kinds of evidence needed to support desired inferences about examinee attri­
butes. Ideally, test developers should consider a wide variety of possible tasks, 
choosing feasible ones that best match the purpose ofthe assessment. It is espe­
cially important when using IRT-based latent class models to consider tasks 
involving multiple skills because these models are especially made for such 
tasks and because the inclusion of multiple-skill tasks generally enhances the 
correspondence between the assessment tasks and the real-life tasks they are 
attempting to predict examinee mastery about. 

Task development not only involves casting a wide net for tasks that show 
promise for measuring the skills of interest but also requires a detailed analy­
sis of such tasks to provide an in-depth delineation of the skills involved, the 
difficulty of applying the skills, and how the skills interact in the task solution 
behavior. Even when skills diagnosis is to be applied to an assessment instru­
ment that already exists, a detailed task analysis must still be carried out even 
though the choice of tasks is moot. In this case, the process is not necessarily 
easier. The task analysis may actually be more difficult when the tasks are 
already chosen because of the constraint on finding a good match between the 
tasks and the specified skills to be diagnosed. 

The analysis of the task-solving behavior and skills or cognitive processes 
clearly plays a critical role in implementing skills diagnosis. A number of impor­
tant outcomes result from this stage of the implementation process. The most 
important are (a) the list of tasks to be used on the assessment instrument and 
(b) a refined description of the skills and how they interact. Some skills from 
the initial representation may have no tasks readily available that measure 
them (e.g., if multiple-choice items are the only available tasks, certain types 
of skills cannot be measured). The number of skills may also need to be 
adjusted upward or downward. Some skills may turn out to be so closely related 
that they need to be combined to form a new higher order skill. By contrast, 
sometimes practitioners may find they need to break down a skill into two or 
more subskills because the task analysis reveals important distinctions not 
previously considered. 

The refined skill descriptions also must be sufficiently rich in detail so that 
independent raters have a high degree of agreement in deciding which skills 
are associated with each task. In particular, an indicator matrix is developed 
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that specifies which skills are associated with each task. The development of 
the list of skills and the indicator matrix are nontrivial exercises that can be 
very time consuming and costly to conduct. But if these exercises are not done 
well, the skills diagnosis will not yield productive results. 

This indicator matrix is referred to as the Q-matrix in the skills diagnosis 
literature. The elements of Q are denoted by qik, such that qik = 1 when skill k is 
associated with item;', and qik = 0 otherwise. In other words, the rows represent 
tasks, the columns represent skills, and the entries are Is and Os, indicating, 
respectively, whether a specific skill is or is not intended to be measured by a 
particular task. In general, the number of items per skill must be sufficient to 
enable accurate measurement of each skill. However, if the number of skills per 
item is too large, then too many parameters are introduced than can be well 
estimated. This is especially important when tasks are dichotomously scored, 
as the 0 to 1 probability range can be divided up to distinguish only a limited 
number of different latent classes. On the other hand, if the number of skills is 
reduced too much by deleting or combining, the remaining skills may lack diag­
nostic utility or interpretability. Making this compromise between too many or 
too few skills is a vital aspect of carrying out a successful skills diagnostic 
analysis. This is discussed in more detail in our first example. 

A key consideration in the development ofthe Q-matrix and the associated 
detailed skill descriptions is the match between task difficulty and the diffi­
culty of the skills involved. Easy tasks cannot yield usable information about 
mastery of difficult skills. Similarly, care must be taken in associating easy-to-
apply skills to difficult tasks. For tasks involving two or more skills, an impor­
tant distinction is whether the skills interact in a conjunctive or compensatory 
manner (or a complex mixture of the two). A conjunctive interaction is when 
successful performance on the task as a whole requires successful application 
of every component skill. Lack of success on any one skill causes a sharp reduc­
tion in successful performance on the task. A compensatory interaction is when 
lack of success on applying one skill can be compensated for by successful appli­
cation of another. An extreme compensatory model is a disjunctive model in 
which successful application of any one skill is sufficient to yield a high likeli­
hood of success on the task as a whole. 

Specification of Psychometric Model 

The psychometric model includes two parts, the model for the skills space (the 
ability model) and the IRF model, which links the ability model with the possi­
ble scored item responses. 

ABILITY MODEL. For simplicity in this chapter, we generally use the term 
skills to refer to the latent attributes being measured. We recognize that the 
latent examinee characteristics of interest do not always fit well with this term 
(e.g., in diagnosing the amount of knowledge an examinee has or in diagnosing 
the presence of an illness). Specifically, when IRT-based latent class models are 
used, ordered categories represent ordered levels of skill proficiency. Letting a 
stand for this categorical examinee ability variable, then, for example, in a simple 
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mastery/nonmastery assessment setting, a = 1 represents mastery on a skill, 
whereas a = 0 represents nonmastery. For convenience, we assume a is dichoto­
mous, but IRT-based latent class models are equally applicable to settings in 
which skill mastery is defined at more than two levels. We also assume for con­
venience that the assessment tasks are scored dichotomously (e.g., correct vs. 
incorrect), although these latent class models can be (and in some cases, have 
already been) easily extended to polytomously scored tasks. 

Let K stand for the number of skills measured by an assessment instru­
ment and let k index be a particular skill (thus, k takes on a value between 1 
and K). Similarly, we use I for the number of items with item index i and J for 
the number of examinees with examinee index j . Next, we define for the j th 
examinee a vector a, = (oc,!, a^ , . . . , a^) denoting the state of mastery or profi­
ciency ofthe examinee on each of the if skills. In the latent-class-model approach, 
ajK is a categorical variable, such that 

«* = 
1 if Examinee j has mastered Skill k 

(1) 
0 otherwise 

In addition to the a (a^, k = l , . . . , K ) ability vector, the ability model should 
also model the relationships between the K skills. The simplest approach is to 
model the correlations among the skills. To adjust for the dichotomous nature 
ofthe ax variables, tetrachoric correlations can be used. If an ordered relation­
ship occurs between two skills in the sense that an examinee cannot attain 
mastery on one skill until some other skill is first mastered, it is advantageous 
for either the model or the estimation procedure to be modified to include such 
relationships. If needed, the relationships among the K components ofthe abil­
ity vector can be modeled using more complex methods, such as log-linear or 
hierarchical models. 

IRF MODELS. The goal of an IRF model is to represent the performance of an 
examinee on an item based on the skills required in responding to the item and 
examinee proficiency on these skills. The general idea behind all the IRT-based 
latent class models is that the higher the proficiency of an examinee on the 
item's required skills, the higher the probability that the examinee will get the 
item right. Specifically, an IRF tells the probability of an examinee giving a cor­
rect item response, conditional on an examinee's mastery standing on each of 
the skills required for the item, as indicated by the Q-matrix. The most impor­
tant distinction to consider in selecting the IRF is the type of skill interaction 
that is believed to occur in solving the items as indicated by the task analysis. 
As described previously, this interaction is either conjunctive or compensatory. 

The most popular models used in the IRT-based latent class approach have 
been conjunctive models, probably because the skill interactions in these appli­
cations have generally been viewed as better fitting a conjunctive interaction 
compared with a compensatory one. For example, the early applications of skills 
diagnosis have focused more on assessment of skills in mathematics, in which 
the solution of a task is broken down into a series of steps, all of which must be 
successfully performed to have a correct response on the task. Viewed in this 
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way, the task analysis naturally leads to a preference for a conjunctive model. 
Conjunctive models include the DINA ("deterministic input; noisy 'and' gate") 
model of Haertel (1989), NIDA ("noisy input; deterministic 'and' gate") model of 
Junker and Sijtsma (2001), the reparameterized unified model (RUM) of Hartz 
(2002) and Hartz and Roussos (2008), and the conjunctive multiple classifica­
tion latent class models (MCLCMs) of Maris (1999). 

The use of compensatory IRT-based latent class models has become popular 
more recently (as compared with conjunctive models). As IRT-based latent class 
models are applied in a greater variety of diagnostic settings, the use of compen­
satory models will certainly increase as well. For example, medical and psycho­
logical diagnosis is an area in which compensatory models seem particularly 
relevant because such diagnoses are typically made based on the presence of 
only some of the possible symptoms; that is, the absence of certain symptoms 
can be compensated by the presence of others—the presence ofall symptoms is 
not required. Compensatory models include the disjunctive MCLCM and com­
pensatory MCLCM (Maris, 1999), DINO (Templin & Henson, 2006), and NIDO 
(Templin, Henson, & Douglas, 2009). 

Regardless of whether a model is conjunctive or compensatory, another 
important consideration is model complexity. Generally, the greater the number 
of parameters in the IRF, the greater the noise in the parameter estimation, and 
the greater the chance of nonidentifiability (i.e., more than one set of parameter 
estimates that fit the data equally well). For example, if ki is the number of skills 
specified for the t'th task, the RUM has ki + 2 parameters per item; but a reduced 
version with ki + 1 parameters per item can be introduced, if necessary. The 
NIDA model is the simplest conjunctive model. It has two parameters per skill, 
and these parameters do not change values across the items. This severe restric­
tion may be helpful for data sets having small sample sizes that do not support 
estimation of more complex models. The DINA model has just two parameters 
per item. Because the number of items always exceeds the number of skills, 
DINA has more parameters than does NIDA and is, thus, a more flexible model. 
However, DINA has a strong restriction in that it assumes that the probability of 
a correct response, given nonmastery on at least one skill, does not depend on the 
number and type of skills that are not mastered. Similar types of flexibility and 
restrictions also exist for the compensatory models. For example, the NIDO and 
DINO models are the counterparts to NIDA and DINA previously mentioned. 
Practitioners who desire more IRF flexibility should study the general diagnos­
tic model (GDM) of von Davier (2005), a generalized modeling framework that 
has the capability of containing most (ifnot all) ofthe above models in addition 
to accommodating new variations of them. However, when developing new models, 
practitioners must be careful to avoid nonidentifiability and conduct reliability 
and validity studies with real and simulated data. (See DiBello, Roussos and 
Stout, 2007, for a review of a wide variety of conjunctive and compensatory 
models, including latent trait models as well as latent class models.) 

Estimation of Model Parameters and Evaluation of Results 

The next step in the implementation process is fitting the model to data via a 
selected estimation method evaluating these results, including the use of model-
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checking statistical procedures. The estimation and evaluation are usually 
implemented in an iterative fashion because the evaluation typically leads to 
changes in either the specification ofthe psychometric model or in the estima­
tion procedure. First, we briefly review the selection of an estimation method, 
and then we review in detail methods for evaluating the results. 

METHODS OF ESTIMATION. The preferred estimation method has been mar­
ginal maximum likelihood estimation (MMLE; e.g., see Bock & Aitkin, 1981), in 
which item parameters and ability distribution parameters are estimated based 
on a likelihood function integrated over the distribution of examinee ability as 
represented by the vector of aK ability variables ( k - l , . . . , K ) . This distribution 
is often approximated by the population proportion of masters on each skill and 
tetrachoric correlations between the K skills. To do this estimation, expectation 
maximization (EM) or Markov chain Monte Carlo (MCMC) algorithms are used. 
Because both the examples we describe below used MCMC estimation, we pro­
vide a brief conceptual description of MCMC. 

First, a probabilistically based computational method is used to generate 
Markov chains of simulated values to estimate all the parameters. Each time 
point (or step) in the chain corresponds to one set of simulated values (a simu­
lated value for each parameter). MCMC theory states that after a large enough 
number of steps (called the burn-in phase of the chain), the remaining simu­
lated values will closely approximate the desired Bayesian posterior distribu­
tion of the parameters. Thus, MCMC estimation is accomplished by running 
suitably long chains, simulating all parameters at each time point of the long 
chain, discarding the burn-in steps, and finally using the remaining steps in 
each chain as posterior distributions to estimate the parameter values and 
their standard errors. The practitioner must carefully choose the number of 
chains to be used, the total length ofthe chain, and the amount to be used for 
the bum-in. The post-burn-in chains are estimates of the posterior distribu­
tions of the parameters. For more information on the use of MCMC in skills 
diagnosis, see Roussos et al. (2007). 

In addition to item parameter estimation, methods must also be used for 
estimating the examinee ability vector, a. Maximum likelihood and Bayesian 
techniques have been developed in this regard. MCMC studies (see above) for 
RUM, DINO, DINA, NIDA, and compensatory MCLCM have included some 
evaluation of ability estimation. As mentioned earlier, in implementing an esti­
mation method, constraints can sometimes be introduced so that appropriate 
model restrictions are included. The available flexibility depends on the partic­
ular software used or on access to the source code and programming expertise. 

EVALUATION OF RESULTS. Evaluation of the results of the estimation algo­
rithm is another critical component of the skills diagnosis implementation 
process. A wide variety of methods can and should be applied at this stage, 
including convergence checking; interpreting the item parameter estimates; 
and calculating and interpreting statistics for model fit, reliability, and validity. 

Convergence checking. Iterative item parameter estimation methods, such 
as EM algorithm and MCMC, require checking for convergence before further 
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analysis is done—either convergence to within some specified tolerance as in 
an EM algorithm or convergence to a posterior distribution in the case of MCMC. 
Because the statistical information one obtains from MCMC estimation (a full 
posterior distribution) is richer than that obtained from an EM algorithm (an 
estimate and its standard error), the evaluation of whether convergence has 
occurred is more complete, yet also more difficult, in the MCMC case. In skills 
diagnosis applications, convergence may be difficult to obtain, depending on 
model complexity and how well the design and assumptions ofthe model corre­
spond to the reality ofthe data. In some cases, complex models may be statisti­
cally nonidentifiable. In other cases, identifiable models may be difficult to 
estimate well because of ill-conditioned likelihood functions. 

Although much has been written in the literature regarding the conver­
gence of Markov chains in MCMC estimation, there is no simple statistic that 
reliably evaluates whether the Markov chain for each model parameter has con­
verged. Four methods have been frequently used: chain plots (i.e., plots that dis­
play the estimate of a parameter for each step in a chain), estimated posterior 
distribution, autocorrelations of the chain estimates, and calculating Gelman 
and Rubin R (Gelman, Carlin, Stem, & Rubin, 1995) for multiple chains. If con­
vergence has occurred after the burn-in phase ofthe chain, the plotted data will 
look like random noise with no discernible trends, the posterior distribution of 
these values will focus on a limited segment of the estimation scale, the auto­
correlations will reduce as distance between the chain steps increases, and the 
.Rvalue for multiple chains will be less than 1.2. In our experience, inspecting 
the chain plots and the posterior distributions has been very helpful, whereas 
inspecting autocorrelations and R values has been less helpful. 

If nonconvergence occurs, the first thing to check is whether the burn-in 
phase of the MCMC chain was long enough to reach the posterior distribution 
phase. This can be checked by running an extremely long chain. If the longer 
chain still does not result in convergence, one can probably rule out chain length 
as the problem. In this case, one can revisit the model-building steps and recon­
sider the Q-matrix and the selected model to see where changes may be war­
ranted. For example, if a skill is assigned to items having a large range of 
difficulty, the MCMC algorithm may not converge to a single level of difficulty 
for the skill. For more about MCMC convergence, the reader is referred to 
Sinharay (2004). 

Interpretation of model parameters. The estimates for the ability distribu­
tion and item parameters should be evaluated for internal consistency, reason-
ability, and concurrence with substantive expectations. For example, a key 
issue for mastery/nonmastery diagnostic models is whether the proportion of 
examinees estimated as masters on each skill is relatively congruent with 
substantive theoretical expectations. If a skill turned out much harder (or eas­
ier) than expected (e.g., from a standard-setting perspective), the Q-matrix 
should be revisited and the item difficulty levels investigated for the items to 
which the skill has been assigned. In addition, the choice of tasks for that 
skill can be revisited to see whether more appropriate tasks can be found 
(e.g., if the proportion of masters for a skill is too low, one could try replacing 
the harder tasks for that skill with easier ones). Ultimately, the definition of 
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the skill may need to be adjusted, for example, by suitable modification of Q 
or in a more basic way leading to a new set of tasks. The relationships among the 
different skills can also be investigated—for example, estimates ofthe tetrachoric 
correlations. 

Next, the item parameters should be closely inspected because they are a 
key determinant of success in the diagnosis. All IRT-based latent class models 
have item parameters indicating how the items performed for diagnostic 
purposes. Item parameters may indicate, for example, how well an item dis­
criminates between masters and nonmasters for each skill assigned to it by the 
Q-matrix. This may result in the test developer changing the corresponding 
Q-matrix entry to 0, resulting in one less item parameter being estimated. 

Model fit statistics. When a Bayesian approach to parameter estimation 
(e.g., MCMC) has been used, posterior predictive model (PPM) statistics are 
a relatively straightforward and easily interpretable approach to evaluating 
model fit that compares observed and model-predicted statistics. Specifically, 
the fitted Bayesian model produces posterior distributions for the model param­
eters, and one then simulates from these posterior distributions and estimates 
the predicted distribution of a statistic or discrepancy measure based on the 
simulated data. Then one compares the observed statistic with its predicted dis­
tribution. Sinharay (2006) gave an example of applying PPM fit statistics to 
data in a skills diagnosis setting that uses the DINA model. Henson, Roussos, 
and Templin (2005) have also developed and applied PPM-based statistics, 
including checks on both item difficulties and item pair correlations. A more tra­
ditional fit statistic is the log-likelihood statistic, which compares the fit of com­
peting models, especially nested models. This statistic was used by von Davier 
(2005) in an analysis of Test of English as a Foreign Language (TOEFL) data 
from Educational Testing Service (ETS), in which the predicted log likelihood of 
the manifest distribution for the compensatory MCLCM is compared with that 
of a unidimensional two-parameter logistic model. 

Reliability. As with all measurement instruments, estimation of reliabil­
ity is another important aspect for skills diagnosis applications. As noted by 
DiBello, Roussos, and Stout (2007), although standard reliability coefficients as 
estimated for assessments modeled with a continuous unidimensional latent 
trait do not translate directly to assessments modeled with IRT-based latent 
class models, conceptions of reliability from first principles do still apply. 
Diagnostic skills classification reliability can be conceptualized in terms ofthe 
twin notions of (a) the correspondence between inferred and true skill mastery 
state and (b) the consistency of classification if the same assessment were 
administered to the same examinee twice. 

In particular, to estimate classification reliability, the method of Henson, 
Roussos, Douglas, and He (2008) can be used. This method can be thought of as 
comprising two steps. In the first step, the method generates parallel sets of 
simulated data (based on the calibrated model) and estimates mastery or non­
mastery for each simulated examinee on each set. In the second step, the method 
uses the results of the first step to calculate (a) the proportion of times that an 
examinee is classified correctly according to the known true attribute state (the 
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correct classification rate for the attribute/skill) and (b) the proportion of times 
an examinee is classified the same for that skill on two parallel tests (estimated 
test-retest consistency rate). The calculated rates can also be adjusted for 
agreement by chance, for example, with the Cohen kappa statistics. 

Validity. Before any diagnostic instrument can be fully implemented 
into an operational testing program, statistical evidence must be gathered to 
demonstrate with real data the validity ofthe inferences drawn from the instru­
ment. Educational and psychological testing has a long tradition of validity 
research, and this research needs to be extended to IRT-based latent class diag­
nostic models. Although only a limited amount of such research has been 
conducted so far, its importance will undoubtedly rise greatly given that the 
gathering of validity evidence appears to be the last major hurdle to overcome 
before operational implementation can be seriously considered. The develop­
ment of appropriate models, estimation methods, and model-checking methods 
has progressed to a sophisticated level, but validity research, until now, has 
lagged behind. 

We divide our discussion of validity into two parts, intemal validity and 
external validity. By internal validity we mean using data from the test itself to 
evaluate the validity of the estimated skill mastery classifications of the 
examinees. By external validity we mean using data external to the test (not 
necessarily item response data) to evaluate the mastery classifications. Two 
internal validity statistics are IMstats and EMstats (Hartz and Roussos, 
2008), which define an examinee to be an item master if he or she is classified 
as a master of every skill required by that item. For each item, examinees are 
thus separated into two subsets: item masters and item nonmasters. The 
IMstats procedure compares the average observed score on the item between 
the item masters and the item nonmasters. If these two scores are close, the 
inferred skill classification has little effect on performance on that item. This 
indicates that the Q-matrix coding for the item should be investigated, including 
perhaps the skill description. EMstats does a similar comparison for the indi­
vidual examinees. Using IMstats and EMstats as starting points, other similar 
intemal validity statistics could be derived to better fit the purposes of specific 
settings. 

In terms of external validity, very little realistic research has been com­
pleted with IRT-based latent class models. However, there is a rich literature 
on validity analyses that can be adapted to skills diagnosis (Messick, 1989). In 
one example of skills diagnosis application, Tatsuoka and Tatsuoka (1997) con­
ducted skills diagnosis in a classroom setting (more than 300 students in all), 
performing diagnosis at a pretest stage, providing remediation instmction based 
on the estimated mastery states of the diagnosis, and then evaluating the 
effectiveness ofthe diagnosis-based instruction with a posttest diagnosis. The 
results were investigated by looking at how student mastery states changed 
from before to after the diagnosis-based instruction. In our education example 
that follows, we also discuss a study by Jang (2005). 

Validity studies, especially external validity, are needed on a larger scale for 
IRT-based latent class models—studies that directly investigate whether the 
estimated mastery states make sense in terms of relevant real-life consequences. 
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Development of Systems for Scoring and Reporting 

The last critical component to be discussed here is how to translate the model 
ability estimates to understandable scores embedded in readable informative 
reports. There are many obstacles to be overcome in this step. The solution will 
certainly vary according to the obstacles across different settings. 

STANDARD SETTING. One issue that naturally arises is that of how to interpret 
the classification label master for a skill. Such an interpretation is typically 
used as a basis for standard setting, which is the process used to determine 
what observed score on an assessment instrument is to be the cutoff between a 
master and a nonmaster. IRT-based latent class models were originally intended 
to be used to determine masters and nonmasters solely on the basis ofthe sta­
tistical behavior ofthe item responses. The substantive interpretation of what 
it means to be a master (as would be fleshed out in a standard setting) has only 
an indirect influence on mastery estimation through the test design and is not 
explicitly used in the mastery estimation. Of course, as mentioned earlier, if the 
likelihood-based mastery estimation resulted in a skill being easier or harder 
than intended, practitioners should appropriately modify the assessment tasks 
or the definition ofthe skill. 

However, in some settings the use of observed subscores is preferred over 
likelihood-based methods for determining skill mastery. In such cases, the 
standard setting-process can be implemented in its usual manner and result in 
the determination of an observed score that functions as the cutoff between 
mastery and nonmastery. (For a didactic description of standard setting in edu­
cation, see Cizek, Bunch, & Koons, 2004.) 

EQUATING. In some settings, it is important to ensure that the mastery esti­
mation for alternate forms, including comparisons across different testing 
times (e.g., from one year to the next), is comparable, that is, the same mastery 
classification given on different forms has the same interpretation. In theory, if 
the IRT-based latent class model fits the data perfectly, equating occurs auto­
matically (Roussos & Xu, 2003). But models never fit data perfectly, so analy­
ses should be carried out to evaluate the equating. Studies of equating using 
the RUM by Roussos and Templin (2004, 2005) have used data deliberately 
simulated with misfit to the assumed model. By using overlapping test forms 
across different test administrations, these researchers demonstrated success­
ful linking using standard estimation practices. 

PROFICIENCY SCALING OF SKILL SCORES. In some settings, skills diagnosis 
may be conducted on a test that reports a single score while also providing diag­
nostic classification information for several skills. By proficiency scaling we 
mean relating examinee classification on the individual skills to their score on 
the test as a whole. In such settings, test takers and users may need statistics 
that illuminate the relationship between skill mastery and the observed total 
test scores—the scores being something they are more familiar with and can 
easily observe for themselves. 



48 ROUSSOS ETAL. 

One example in this regard is the work of Templin and Henson (2008), who 
developed estimators ofthe relationship between all possible test scores and all 
possible skill mastery patterns (all possible values of the vector of aK mastery 
parameters for the k = l , . . . , K skills). The estimation method is based on sim­
ulating 100,000 examinee item responses from the fitted model. To make these 
results more interpretable, two sets of summary statistics are produced. The 
first set of statistics summarizes the distribution of skill mastery patterns given 
a test score, and the second summarizes the distribution oftest scores for each 
possible skill mastery pattern. 

ESTIMATION OF SKILL MASTERIES USING SUBSCORES. Sometimes practition­
ers may need to use simple subtest scores to determine examinee mastery. IRT-
based latent class models can be used to help determine the optimal cut-points 
for a subscoring approach by conducting simulations based on the fitted model. 
For details, see Henson, Templin, and Douglas (2007). 

DEVELOPMENT OF SCORE REPORTS. Translation of skills diagnosis results 
into readable and informative score reports is a challenge that must be eventu­
ally confronted by every approach to skills diagnosis, and different settings 
have different challenges. IRT-based latent class models produce mastery clas­
sifications; different levels of sophistication may be used in translating them 
into a score report, depending on the nature ofthe assessment. The higher the 
stakes of the diagnosis, the more supporting evidence and transparency there 
should be in explaining the scores and relating them to future consequences. 

For example, the College Board currently provides a Score Report Plus that 
is sent to each student who takes the PSAT/NMSQT (Preliminary SAT/National 
Merit Scholarship Qualifying Test). This is the first nationally standardized test 
to give some limited diagnostic skills-based feedback using an approach based on 
the diagnostic methodology of Tatsuoka (1983) that results in mastery classifica­
tion on a set of skills (similar to results produced by IRT-based latent class mod­
els). This score report is limited to skills for which an examinee shows strong signs 
of weakness, only to a maximum of three skills per major content area, and does 
not attempt to assign a score to these skills. Even with these limitations, this 
application was a major advancement in the operability of skills diagnosis. 
(Interested readers are encouraged to visit http://professionals.collegeboard. 
com/testing/psat/scores/student, which includes detailed information about the 
Score Report Plus, as well as a link to a sample student score report.) 

In the first example in the next section, we present details from a study by 
Jang (2005) in which she developed more extensive score reports, separately for 
students and teachers, that give information on each skill, including a formal 
statistical measure of proficiency. Jang's work is the most complete example we 
know of a user-friendly diagnostic report and makes a good starting point for 
much-needed further research in this area. 

Example Applications 

Up to this point, the chapter has focused on general descriptions of practical 
procedures associated with the implementation of IRT-based latent class mod-

http://professionals.collegeboard


SKILLS DIAGNOSIS FOR EDUCATION AND PSYCHOLOGY 49 

els in skills diagnosis applications. We now present two example applications 
to demonstrate the instantiation ofthe implementation procedure, pointing out 
how each example addresses each step ofthe implementation process. 

Educational Measurement 

Jang (2005) conducted a validity study of the fusion model skills diagnosis 
system (Roussos et a l , 2007), which uses the RUM IRT-based latent class 
model. Students in a classroom setting were given a pretest and a posttest 
using two test forms designed to be approximately parallel forms. For conven­
ience, the forms used for the pretest and posttest are referred to as Form 1 
and Form 2, respectively. The specific setting was a summer English language 
program for nonnative speakers conducted at a large midwestern university. 
The two test forms were from the LanguEdge English Language Learning 
(ELL) assessment developed by ETS. Each form had 39 multiple-choice items 
(constructed response items were not included in Jang's study), and ETS pro­
vided data for about 1,350 examinees per form, with no one identified as having 
taken both forms. 

PURPOSE OF THE ASSESSMENT APPLICATION. ETS developed the LanguEdge 
as a prototype for the latest version of TOEFL (e.g., see Eignor, Taylor, Kirsch, 
& Jamieson, 1998), but Jang defined a new classroom formative assessment 
purpose for the test: to extract diagnostic information to be used by teachers 
and learners in a university-based summer ELL program. This was a low-stakes 
setting—the diagnostic assessment was not used in grading the students. A 
total of 27 students were enrolled in two course sections with a different teacher 
for each section. Diagnostic feedback was offered as an estimation of mastery 
versus nonmastery for each student for a set of skills to be agreed upon by 
Jang and the course teachers. It was important that the skills be both under­
standable to the teachers and theoretically defensible from the perspective of 
second-language (L2) learning theory. 

DESCRIPTION OF THE SKILLS SPACE. Jang (2005, 2006) conducted a detailed 
literature investigation as she considered how to represent reading comprehen­
sion in L2 learning. Jang reported great controversy as to whether reading com­
prehension was decomposable into skills. Moreover, among the many researchers 
who supported a skills representation, there was still further controversy about 
the nature of those skills. The representations varied greatly from one setting 
to another, depending on the theoretical framework used, the purpose of the 
representation, and the specific tasks being analyzed. In other words, Jang 
reported finding much support for a skills-based approach to L2 reading com­
prehension but little agreement on the specific representation of those skills. 
So, the next step was to analyze the specific tasks at hand to obtain a firmer 
handle on possible skills space representations. 

TASK ANALYSIS. Because in this example the tasks already existed, the next 
step in the implementation process was to carefully analyze the given tasks 
(i.e., the multiple-choice items on the two test forms) to develop the set of skills 
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with detailed descriptions, including judging the relative difficulty ofthe skills; 
describing how the skills interact in solving the tasks; and developing detailed 
and replicable coding procedures to be used in constructing the Q-matrix, 
which indicates which skills are associated with which tasks. 

Development ofQ,-matrix. Jang (2005, 2006) first conducted a series of pre­
liminary analyses: analysis of the solution process and possible strategies for 
solving each item; analyzing task textual features, such as the word count for 
each task stimulus and difficulty ofthe vocabulary in the item stems or read­
ing passages; consulting the ETS test specification codes and accompanying 
descriptors from the original test developers; and performing nonparametric 
latent dimensionality analyses. She then conducted in-depth, think-aloud ver­
bal protocol analyses, which alone identified 18 processes as possible skill can­
didates. Through the combination of all these analyses, she initially identified 
32 distinct processes or features that could have been used as skills or attrib­
utes, a number she knew was not statistically supportable. After reducing the 
number of skills to 16, she found that there were still some skills that had too 
few items associated with them. She finally reduced the number of skills to 
nine, a number she found was both statistically and substantively supportable. 
Indeed, the statistical dimensionality analyses identified three clusters of items 
that corresponded to three of the skills that had larger numbers of items asso­
ciated with them (statistical analyses tend to identify fairly large dimensions; 
see Jang & Roussos, 2007). She noted that further reductions by combining or 
eliminating skills, although possibly resulting in still increased mastery esti­
mation reliability, would have not been supported either substantively or sta­
tistically. Specifically, either skills that were too distinct would have been 
combined or skills would have been eliminated, resulting in some items having 
no assigned skills. 

Using all the above analyses together, Jang developed a final skills space 
simultaneously satisfying the new teaching and learning purpose of her assess­
ment and theoretically defensible based on existing linguistic literature. The 
final Q-matrix averaged about two skills per item (which translated to about 
eight items per skill). 

Skill interaction. As mentioned previously, in developing the skills space, 
it is also important to investigate how the skills interact in the task-solution 
process. An important distinction for within-task interaction is one we have 
referred to as conjunctive versus compensatory. Recall that by conjunctive skill 
interaction we mean that successful application of all the required skills for a 
task seems necessary for successful performance on the task as a whole; and by 
compensatory we mean that a higher level of competence on one skill can com­
pensate for a lower level of competence on another skill to result in successful 
task performance. Jang (2005, 2006) noted that, depending on the skill repre­
sentation she chose, she could have been led to either a conjunctive model, a 
compensatory model, or a mixture of the two models. She decided that a con­
junctive skill representation was adequate for her particular setting because, 
based on her task analyses and her reading ofthe literature, some ofthe inter-
skill relationships appeared to conform to a conjunctive model to some extent; 
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the skills that did not interact conjunctively were mostly amenable to being 
combined into higher order skills that did seem to behave conjunctively with 
the remaining skills. 

Q-matrix skill descriptions. Another important outcome ofthe task analysis 
process is the development of specific skill descriptors that are used for an ini­
tial substantive assignment of skills to tasks. The skill descriptions need to be 
sufficiently clear that independent raters can reliably agree on these assign­
ments. To give an idea of the amount of detail required, we present the nine 
skill descriptions as follows: 

• Skill 1: Deduce word meaning from context (CDV). Deducing the mean­
ing of a word or a phrase by searching and analyzing text and by using 
contextual clues appearing in the text. 

• Skill 2: Determine word meaning out of context (CIV). Determine word 
meaning out of context with recourse to background knowledge. 

• Skill 3: Comprehend text through syntactic and semantic links (SSL). 
Comprehend relations between parts of text through lexical and gram­
matical cohesion devices within and across successive sentences without 
logical problems. 

• Skill 4: Comprehend text-explicit information (TEI). Read expedi­
tiously across sentences within a paragraph for literal meaning of por­
tions of text. 

• Skill 5: Comprehend text-implicit information at global level (TIM). 
Read selectively a paragraph or across paragraphs to recognize salient 
ideas paraphrased based on implicit information in text. 

• Skill 6: Infer major arguments or a writer's purpose (INF). Skim through 
paragraphs and make prepositional inferences about arguments or a 
writer's purpose, with recourse to implicitly stated information or prior 
knowledge. 

• Skill 7: Comprehend negatively stated information (NEG). Read care­
fully or expeditiously to locate relevant information in text and to deter­
mine which information is true or not true. 

• Skill 8: Summarize major ideas from minor details (SUM). Analyze and 
evaluate the relative importance of information in the text by distin­
guishing major ideas from supporting details. 

• Skill 9: Determine contrasting ideas through diagrammatic display 
(MCF). Recognize major contrasts and arguments in the text whose 
rhetorical structure contains the relationships such as compare/ 
contrast, cause/effect, or alternative arguments, and map them into 
mental framework. 

Skill difficulty and item difficulty. Before a diagnostic model is fit to the 
data, practitioners often have a rough idea ofthe relative difficulty of each skill 
and of the individual items. Once data are available, but before a diagnostic 
model is fit to the data, simple item difficulty statistics can be computed, such 
as the proportion-correct score or the estimated difficulty parameter from 
unidimensional IRT. Because ETS data were available, Jang conducted a 
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unidimensional IRT analysis of the LanguEdge forms and compared the IRT 
item difficulty parameters with skill difficulty based on the complexity ofthe 
processing involved. The results showed excellent correspondence between the 
order based on skill difficulty and that based on the IRT analysis, except for one 
skill, SUM, "summarizing major ideas from minor details," which the IRT 
analysis indicated to be much easier than Jang believed it would be based on 
her process analysis. 

SPECIFICATION OF PSYCHOMETRIC MODEL. For Jang's research, an IRF was 
needed that was applicable to dichotomously scored items and dichotomous 
mastery (i.e., mastery versus nonmastery). Furthermore, as reported in the 
task analysis results, Jang determined that some skills seemed to interact in a 
conjunctive manner, whereas the remaining skills seemed like they could be 
combined to form higher order skills that also seemed conjunctive. Ofthe avail­
able conjunctive-model IRFs, she chose the RUM in the form, which assumes 
the Q-matrix is "complete"; that is, it assumes the Q-specified skills are suffi­
cient for modeling the item responses so that the ability and item parameter for 
representing missing skills in the Q-matrix could be dropped from the model. 

The resulting modified RUM IRF is given as follows: 

PiXij = 1 a .) = n * f [ r | ( 1 - a ^ » (2) 

where Zy represents the dichotomously scored item response of examinee j to 
item i, a, is the vector of K dichotomous mastery variables for examinee j , rcfis 
the probability of a correct response on item i for an examinee who has mas­
tered all the required skills for the item, and rfk is the ratio for item i of the 
expected performance on skill k of a nonmaster to the expected performance of 
a master ofthe skill. For examinees who have not mastered a required skill, the 
item response probability will be multiplicatively reduced by an r | for each 
nonmastered skill, where 0 < r% < 1. The more strongly the item depends on 
mastery of a skill, the lower the item response probability should be for a non-
master of the skill, which translates to a lower r% for that skill on that item. 
Thus, r*k functions like a reverse indicator ofthe strength of evidence provided 
by item i about mastery of skill k. The closer rfk is to 0, the more discriminating 
item i is said to be for skill k. 

The RUM IRF was implemented within a Bayesian framework called the 
fusion model system. The fusion model uses a vector of parameters (pk,k = l . . . K ) 
to model the proportion ofthe population who has mastered each ofthe K skills, 
and it uses tetrachoric correlations to model the correlations between the dichoto­
mous skills. Furthermore, the ability parameter is an estimate ofthe probability 
that an examinee is a master of each skill. In Bayesian language this is called the 
posterior probability of mastery (ppom) on each skill. The ppom can be rounded 
to the nearest integer (0 or 1) to estimate skill mastery, but the ppom itself is 
an indication of the statistical strength of that estimate. In this particular 
example, Jang estimated that an examinee was a skill master if the ppom was 
greater than 0.6 or a nonmaster if ppom was less than 0.4. Examinee mastery 
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status on a skill was estimated as "indeterminate" if the ppom was between 
0.4 and 0.6. 

ESTIMATION OF MODEL PARAMETERS AND EVALUATION OF RESULTS. Next Jang 
proceeded to fit the model to the data using MCMC estimation. Jang then eval­
uated the results of the estimation using a variety of methods, including stan­
dard model fit statistics, as well as analyses targeted to the particular methods, 
data, and objectives of interest in her study. All these analyses are discussed in 
more detail below. 

Estimation. The fusion model system (Roussos et al., 2007) was used to esti­
mate the model parameters and conduct evaluative statistical analyses. The 
estimation software within this system is called Arpeggio (Russos et al, 2007), 
which provides MCMC estimation. The first step was to use Arpeggio to conduct 
a joint calibration ofthe two forms using the ETS data along with one Q matrix 
for both forms together. 

Convergence checking. Convergence was evaluated for the n* rfk, and p* 
parameters by studying graphs of the posterior distributions, chain plots, 
and autocorrelation functions for chain lengths of 5,000, 15,000, and 30,000. 
Examples of these graphs are shown in Figure 3.1 for one ofthe r* parameters 
from Form 1. The chain plots show every 10th term in the chain to simplify the 
plots and reduce the sizes ofthe output files. In this particular example, it seems 
evident from the chain plots that the first 1,000 steps can adequately serve as 
the bum-in. The plots clearly indicate that the chains have settled into a stable 
distribution. Convergence was seen to occur for all the item parameters as well 
as for the population ability distribution parameters (thepk values). The graphs 
ofthe posterior distributions supported the inference from the chain plots that 
convergence has occurred, as there was little change in the posterior distribu­
tions after the first 1,000 chain steps, and the mass of each distribution was 
confined to a limited range of values. 

The figure also shows the autocorrelation function, which can be used to 
determine the degree of independence between two groups of data separated by 
a specified number of steps in the chain. If autocorrelation is relatively high, 
the chains must be run longer to estimate the posterior distribution with rea­
sonable accuracy. Figure 3.1 indicates there is little autocorrelation between 
chain estimates that are spaced 500 or more steps apart. This example illus­
trates good convergence results and is no doubt due to the careful model devel­
opment that Jang conducted. 

Interpretation of model parameters. Once convergence was confidently 
attained, Jang next looked at the proportion of examinees who were estimated 
as masters, nonmasters, and indeterminate on each ofthe skills. The results 
for Form 1 are presented in the top half of Table 3.1. Note that the results show 
no obvious anomalies, such as values close to zero or one. Indeed, these results 
showed strong agreement with the expectations of Jang and the unidimen­
sional IRT results that were reported previously; that is, the results indicate 
that the SUM skill appeared to be easier for the examinees than was expected 
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Table 3.1. Mastery Classification Statistics 

Skill 

CDV 
CIV 
SSL 
TEI 
TIM 
INF 
NEG 
SUM 
MCF 

Skill 

CDV 
CIV 
SSL 
TEI 
TIM 
INF 
NEG 
SUM 
MCF 
Mean 

Overall 

.87 

.93 

.89 

.94 

.91 

.91 

.84 

.90 

.95 

.90 

Masters 

.56 

.54 

.49 

.50 

.45 

.46 

.38 

.58 

.43 

Classification proportions for Form 1 

Non-masters 

.31 

.37 

.39 

.43 

.46 

.44 

.47 

.32 

.51 

Model-predicted correct classification 

Forml 

Masters 

.88 

.94 

.89 

.94 

.90 

.91 

.83 

.90 

.94 

.90 

Non-masters 

.85 

.92 

.89 

.94 

.91 

.91 

.84 

.88 

.95 

.90 

Overall 

.92 

.84 

.89 

.88 

.95 

.91 

.81 

.89 

.85 

.88 

rates 

Form 2 

Masters 

.94 

.86 

.90 

.88 

.96 

.91 

.83 

.90 

.87 

.90 

Indeterminate 

.13 

.08 

.12 

.07 

.09 

.10 

.15 

.11 

.06 

Non-masters 

.88 

.80 

.88 

.87 

.94 

.90 

.78 

.87 

.83 

.86 

from Jang's substantive process analysis. In this case, Jang did not feel a need 
to consider any further modifications for purposes of her study, but she recom­
mended further work to investigate this particular skill. 

The item parameters, Ttf and r | , were then inspected in detail because they 
indicate how well the items performed for diagnostic purposes. The nf parameter 
(i.e., probability of correct response conditional on mastery ofall skills required by 
an item) is desired to be close to unity (1.0). The smallest n* value for Form 1 was 
0.46, and it was the only one below 0.50. For Form 2, the four smallest n* values 
were 0.42, 0.43, 0.44, and 0.46, and were again the only ones below 0.50 for that 
form. Jang considered adding new skills to the Q-matrix to help with the low n* 
values, but such skills would have had insufficient items to justify keeping them. 

The rfk parameter indicates how well each item discriminates between 
masters and nonmasters for each ofthe skills assigned to the item, with larger r* 
values indicating poorer discrimination. After identifying 13 r* values greater 
than 0.9 (about 9% of the total), Jang eliminated the corresponding Q-matrix 
entries (i.e., changed the entry from a 1 to a 0) for these item-skill combinations 
because the r* values indicated the items had poor discrimination power for 
these skills. The 0.9 criterion was arbitrarily chosen on the basis ofthe needs 
of this particular application (Jang wanted to err more on the side of keeping 
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initial Q-matrix entries intact, rather than eliminating them), and other crite­
ria may be more appropriate in other settings. 

Model fit statistics. Using the MCMC posterior distributions, Jang conducted 
PPM checking by comparing model-predicted statistics with statistics from the 
observed data, in particular, the item-pair correlations, the item proportion-
correct scores, and the observed score distribution. She reported that the mean 
absolute difference (MAD) between predicted and observed item proportion-
correct scores was 0.002 and the MAD for the correlations was 0.049. Both results 
supported the claim of good fit ofthe model to the data. Shown in Figure 3.2 is 
a comparison between the observed and predicted score distributions for Form 1. 
The misfit at the very lowest and highest parts ofthe distribution were expected 
as the mastery/nonmastery examinee model overestimated the scores ofthe low­
est scoring examinees and underestimated the scores of the highest scoring 
examinees. The goal ofthe analysis was to estimate mastery/nonmastery rather 
than to scale examinees, and this misfit actually had no effect on the mastery/ 
nonmastery classification. Specifically, all the high-scoring examinees whose 
scores were underestimated were all classified as masters of all the skills, in 
spite ofthe underestimation; all the low-scoring examinees whose scores were 
overestimated were still classified as nonmasters on all the skills, in spite ofthe 
overestimation. 

Reliability. Jang estimated classification reliability using the method of 
Henson et al. (2008) in which parallel sets of simulated data are generated on 
the basis ofthe calibrated model. Mastery/nonmastery for each simulated exam­
inee on each skill is estimated for each generated data set, and the proportion of 

1.2 

H 
•S 0.8-1 

Observed 

- Model estimated 

1 4 7 10 13 16 19 22 25 28 31 34 37 40 

Score 

Figure 3.2. Comparison of observed and model estimated score distributions for Form 1. 
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times an examinee is classified correctly according to the simulated true mas­
tery state is calculated, thus producing an estimate of correct classification rate 
for the skill. The results are shown in the bottom half of Table 3.1. Jang con­
cluded that the correct classification rates for the test forms were sufficiently 
reliable for her application. Form 1 was slightly more reliable (Af = 90%) than 
Form 2 (Af = 88%). No skill had a correct classification rate below 80%. 

Internal validity. Jang conducted an IMstats analysis as provided for in 
the fusion model system. Recall that for each item, IMstats divides the exami­
nees into groups according to how many ofthe particular skills required by the 
item each examinee has been estimated as having mastered. Examinees who 
have mastered all the skills required by an item are called item masters, and 
those who are nonmasters on at least one ofthe skills required for an item are 
called item nonmasters. We remind the reader that this use ofthe terms master 
and nonmaster is different from our usual usage with respect to mastery of 
individual skills. Here mastery is discussed relative to all the skills required 
for an item, not mastery relative to a single skill. IMstats computes the observed 
proportion-right score on each item for the examinees falling into each of the 
specified groups for that item. The results are examined to see whether the item 
masters have performed decidedly better than item nonmasters. Figure 3.3 
presents Jang's IMstats results for Form 1. 

The results seem to indicate a high degree of intemal validity for the skills 
diagnosis, as the mean score differences between item masters and item non-
masters are quite large for the vast majority ofthe items. The results also point to 
certain problematic items. Jang noted that the worst of the problematic items 

1-

o 
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Figure 3.3. IMstats intemal validity check comparing performance difference between 
item masters and item nonmasters. 



58 ROUSSOS ETAL. 

were almost all very hard, but there was also one that was very easy. The hard 
items included all the items that were found above to have low n* values. As noted 
by Jang, the test she used had been originally intended as a norm-referenced test 
for which items are needed that cover a wide range of difficulty over many skills, 
whereas diagnostic mastery testing is optimal when the difficulty level of a skill 
is held as nearly constant as possible at the level at which mastery is desired to 
be evaluated. Given that the test had not been originally designed for skills diag­
nosis, the number of problematic items seems comparatively small and indicates 
that the Q-matrix was carefully designed in regard to this issue. 

Pretest Iposttest validity analysis. The diagnostic results indicated that 
on average, the students improved their reading skills. This was as expected 
because the students received instruction directly related to the construct of 
the assessment instrument, and the new diagnostic purpose seemed to be well 
implemented in the instrument (as evidenced by the above statistical evalua­
tion). However, Jang was also interested in whether the use of the diagnostic 
assessment had improved the instruction and learning. The use of a control 
group would be the ideal way to answer this question, but such was not avail­
able for her study. To gain additional external validity information in regard to 
this issue, Jang conducted surveys and interviews with the students and teach­
ers after the pretest scores and the posttest scores had been reported. At both 
time points, the overall feedback of the students was very positive, indicating 
they generally found the diagnostic information both accurate and helpful; 
however, the feedback also indicated that most of the students actually used 
the information to guide their study either only "a little bit" or "not at all." 
Interviews with the teachers showed that one teacher used little ofthe diagnos­
tic information to guide her instmction, whereas the other explicitly used 
skills-based instruction and used the pretest results to help her. Readers are 
referred to Jang (2005) for more detailed analyses of her results. 

SCORE REPORTING. The results of the pretest and posttest skills diagnoses 
were reported back to the students and teachers in the form of descriptive 
reports detailing each student's strengths and weaknesses. The design ofthe 
reports was based on interviews with the students and teachers to ascertain 
their opinions about the sort of information they would find useful in a diagnos­
tic score report. Jang also reviewed the score report used by the College Board 
in regard to the PSAT/NMSQT (http://professionals.collegeboard.com/testing/ 
psat/scores/student). 

An example of one of Jang's student reports for the pretest results is given 
in Figure 3.4. To help one understand the classifications, she reported an elab­
orated written description of each skill, a probabilistic measure of the skill 
classification ("skill mastery standing") so that the user has a measure ofthe 
strength ofthe evidence, and a list ofthe items ("Example Questions") involving 
the skill ordered from the highest discriminating item to the lowest so the user 
can better understand the relationship of their scored item performance to their 
skill classification. The flags on the left side of the second page indicate skills 
that need improvement. A question mark indicates that the skill mastery is 
indeterminate. As mentioned earlier, Jang's work is the most complete example 

http://professionals.collegeboard.com/testing/
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we know of a user-friendly diagnostic report. The reader is referred to Jang 
(2005) for more examples of her teacher and student score reports. 

Psychological Assessment Example 

The Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.; 
DSM-TV-TR; American Psychiatric Association, 2000) defines most psychologi­
cal disorders using a set of criteria that are either met or not met. Individuals are 
classified as having a disorder if a specific number of the criteria are satisfied. 
Although IRT-based latent class models have been typically used in education 
applications to determine mastery of skills, they easily generalize to psychologi­
cal assessment applications to determine those criteria that have been met 
in questionnaires developed to measure disorders based on their DSM-TV-TR 
defined criteria. In our psychological assessment example, Templin and Henson 
(2006) developed a new IRT-based latent class model and applied it to an exist­
ing instrument for measuring pathological gambling. They defined a new diag­
nostic purpose for the instrument and fit their new model to a new sample of 593 
undergraduates. 

PURPOSE OF THE ASSESSMENT APPLICATION. The DSM-TV-TR defines patho­
logical gambling based on 10 dichotomous (met/not met) criteria. An individual 
who meets any 5 ofthe 10 criteria is classified as a pathological gambler. One of 
the most common scales used to assess pathological gambling is the South Oaks 
Gambling Screen (SOGS; Lesieur & Blume, 1987). SOGS classifies individuals 
as either probable or nonprobable pathological gamblers; however, SOGS was 
not developed to measure each criterion, and so the specific criteria that have 
been met by any individual cannot be assessed. As noted by Templin and Henson 
(2006), knowing which criteria cause a particular case of pathological gambling 
could have substantial impact on the method of treatment for the disorder. 

As an alternative to SOGS, Feasel, Henson, and Jones (2004) developed 
the Gambling Research Instrument (GRI), a 41-item questionnaire designed to 
measure each ofthe 10 DSM criteria with a subscore for each criterion. The GRI 
could not be directly used as a subscore-based diagnostic instrument, as no sub-
score cut-points were developed for the individual criteria. Because a criterion-
based diagnosis could provide substantial advantages and the GRI provides 
one possible foundation for such diagnosis, Templin and Henson (2006) desig­
nated this new purpose for the GRI and used IRT-based latent class models to 
achieve their objective. 

DESCRIPTION OF ATTRIBUTE SPACE. The latent attributes that are the object 
of the "skills" diagnosis are not skills but, rather, the 10 DSM criteria. These 
criteria are dichotomous latent traits—that is, an individual either does or does 
not meet each individual criterion. The criteria are already well defined, and 
their descriptions are as follows: 

• Criterion 1: PREO. Is preoccupied with gambling; for example, preoccu­
pied with reliving past gambling experiences, planning the next venture, 
or thinking of ways to get money with which to gamble. 
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• Criterion 2: INCR. Needs to gamble with increasing amounts of money 
to achieve the desired excitement. 

• Criterion 3: CONT. Has repeated unsuccessful efforts to control, cut 
back, or stop gambling. 

• Criterion 4: IRRI. Is restless or irritable when attempting to cut down 
or stop gambling. 

• Criterion 5: ESCA. Gambles as a way of escaping from problems or of 
relieving dysphoric mood (e.g., feelings of helplessness, guilt, anxiety, 
depression). 

• Criterion 6: RETU. After losing money gambling, often returns another 
day to get even. 

• Criterion 7: LIES. Lies to family members, therapist, or others to con­
ceal extent of gambling involvement. 

• Criterion 8: CRIM. Has committed crimes (e.g., forgery, fraud, theft, 
embezzlement) to finance gambling. 

• Criterion 9: LOSS. Has jeopardized or lost a significant relationship, 
job, educational, or career opportunity because of gambling. 

• Criterion 10: MONY. Relies on others for money to relieve desperate 
financial situation caused by gambling. 

TASK ANALYSIS. Because the assessment tasks already existed (the GRI sur­
vey questions), the next step in the implementation process was to carefully ana­
lyze the tasks to determine the Q-matrix (which criteria go with which tasks) and 
to describe how examinee standing on each criterion interacts in the process of 
task endorsement. The tasks were statements about activities or behaviors that 
relate to the 10 pathological gambling criteria. A 0-5-point Likert-type scale 
was originally developed for the GRI tasks, but Templin and Henson (2006) 
dichotomized the scoring because they found that for the subjects they were tar­
geting (college undergraduates), most ofthe task responses were either 0 or 1. 
Thus, a score of 0 meant the examinee did not endorse the item, and a 1 or more 
was scored as merely a 1, indicating the examinee did endorse the item. 

Development of Q-matrix. Although each item on the GRI was originally 
assigned to one particular criterion, a reanalysis by two raters experienced in 
measurement of pathological gambling revealed a substantial nmnber of items for 
which both raters agreed that more than one criteria should be assigned. In other 
words, for some items, endorsement seemed related to more than one criterion. 
One example Templin and Henson (2006) cited was an item that stated, "I worry 
that I am spending too much gambling." Endorsement of this statement could be 
related to Criterion 2 (INCR), Criterion 3 (CONT), and/or Criterion 6 (RETU). 
This substantive reanalysis of the GRI items resulted in a Q matrix having an 
average of 1.3 criteria per item, which translated to about 5.5 items per criterion. 

Skill interaction. In this case, skill interaction refers to how a subject's 
meeting or not meeting the 10 criteria theoretically interact to lead to either 
endorsing or not endorsing an item. As in the education example, the major dis­
tinction to be made is between conjunctive and compensatory interaction. In the 
above example of an item with three criteria, Templin and Henson (2006) con­
sidered whether it was necessary that all three criteria be met for a subject to 
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have a high probability of endorsing the item statement, as would be true for a 
conjunctive model. They noted it seems clear that a high probability of endors­
ing the item would likely result if even just one of the three criteria were met. 
This is a type of compensatory interaction called disjunctive because it is the 
direct opposite of conjunctive. Placing the two types side by side makes this 
clear: For conjunctive, not meeting just one of the three criteria causes a low 
probability of endorsement; but for disjunctive, meeting just one ofthe three cri­
teria causes a high probability of endorsement. 

SPECIFICATION OF PSYCHOMETRIC MODEL. TO accommodate the disjunctive 
interaction ofthe criteria, Templin and Henson (2006) naturally wanted a dis­
junctive model. The only such model available was one by Maris (1999), which 
has nonidentifiable item parameters. The Maris disjunctive model could be 
reparameterized in a way similar to the RUM (Roussos et al., 2007), but the 
number of parameters per item is higher than they desired, given their rela­
tively small sample size of 593 subjects. Instead, they wanted a disjunctive ver­
sion of the conjunctive DINA model, which has only two parameters per item; 
but such a model did not exist. Thus, Templin and Henson developed a new 
model that is the disjunctive counterpart of DINA. Appropriately, they called 
their new model DINO, which stands for "deterministic input; noisy 'or' gate." 
Ability is modeled with a .K-dimensional vector a of Os and Is, where O/* = 1 indi­
cates that subject j meets criterion k, and 0 means the criterion has not been 
met. The DINO item parameters can be expressed, as follows: 

Tti = Probability subjects endorse item i, 
given they have met at least one criterion. (3) 

n = Probability subjects endorse item i, given 
they have met none ofthe item's criteria. (4) 

If we letXij represent the dichotomously scored response of subject j to item 
i, such that Xy = 1 indicates endorsement of the item statement, then the IRF 
for DINO can be written as 

P(Z, = i|a.) = T t W ^ ^ ^ V P - ' 1 ^ ^ . (5) 

If a subject has met at least one of the criteria associated with item i, as 
specified by the Q-matrix, the exponent for Tt, will be 1 and the exponent for r; 
will be 0. Conversely, if a subject has not met any of the criteria for item i, the 
exponent for Jt* will be 0, whereas that for n will be 1. DINO thus represents 
the disjunctive counterpart ofthe conjunctive DINA model for dichotomously 
scored items. 

Templin and Henson (2006) implemented their DINO IRF within a Bayesian 
model framework, which facilitates direct estimation of ability distribution 
parameters. They used a vector of parameters (pk, k = 1 . . . K) to model the pro­
portion of the population meeting each of the K criteria, and they used tetra­
choric correlations to model the correlations between the dichotomous criteria. 
From their Bayesian approach, for each individual, they were able to estimate 
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not only the probability that each criterion is met but also the probability that at 
least 5 ofthe 10 criteria have been met—each individual's probabihty of patho­
logical gambling (PPG). The specific classification rale they used was as follows: 
If a subject's PPG is 0.5 or more, the individual is classified as a pathological 
gambler. Different decision rules may be more appropriate for other settings. 

A significant advantage of diagnostic modeling can be highlighted here. 
Specifically, Templin and Henson (2006) pointed out that because individuals 
can be given a criteria profile instead of only being labeled as either pathological 
or nonpathological gamblers, differential treatments could be formulated that 
focus on those particular criteria that are most likely met. In addition, high-risk 
individuals (e.g. those meeting three or four ofthe criteria) could be easily iden­
tified so that potentially preventative actions could be taken. 

ESTIMATION OF MODEL PARAMETERS AND EVALUATION OF RESULTS. N e x t , 
Templin and Henson (2006) used MCMC to estimate their model parameters, 
and then they used a variety of analyses to evaluate the results ofthe estima­
tion. The following sections briefly describe the estimation procedure and each 
of their evaluation analyses. 

Estimation. On the basis of their data from 593 college students who 
responded to all 41 ofthe GRI items, Templin and Henson (2006) estimated the 
DINO model parameters using an MCMC algorithm that had uniform priors on 
all item and ability distribution parameters. They used an MCMC chain that 
had a total length of 50,000 steps, of which the first 40,000 were used for the 
burn-in period. 

Convergence checking. Convergence was evaluated for the Tt;, r,, and pk 

parameters by calculating the Geweke (1992) index and by visual inspection of 
the MCMC chain plots. The results indicated that the chains for the model 
parameters had converged to stable posterior distributions. 

Interpretation of model parameters. Given convergence, mean estimates of 
all the ability distribution and item parameters were obtained. The ability dis­
tribution parameters, the proportion of the students who were estimated as 
having met each ofthe 10 criteria, are presented in the top part of Table 3.2. 

As expected from a sample of undergraduate students, the proportion of 
individuals meeting any given criterion was generally low, with all values 
being below 50%. The highestpk's were 49%, 48%, and 47% for Criteria 2 (INCR), 
7 (LIES), and 5 (ESCA), respectively, as contrasted with the lowest pk of 8% 
(CRIM). These indicate that individuals often gamble for excitement or escapism 
and may gamble deceptively, but seldom do they commit crimes to finance their 
gambling. Templin and Henson (2006) were satisfied that these estimates were 
realistic and that they do not indicate any obvious statistical problems, such as 
floor or ceiling effects. 

The item parameters, Tt; and r; for each item, were then inspected in detail 
to see how well the items performed for diagnostic purposes. They wanted large 
values of Jt; (probability of endorsing the statement for item i, given that at least 
one Q-specified criterion was met) and low values of r; (probability of endorsing 
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item i, given that no criteria were met). To aid in their interpretation ofthe Tt, 
and r* estimates, Templin and Henson (2006)developed an item diagnostic 
index (IDIDINo) that combines the two item parameters, as follows: 

LUiDiNo - — j r . r- (o) 

Technically, this index is the ratio of the odds of endorsing the item for 
someone who meets any ofthe criteria for the item to the odds of endorsement 
for someone who meets none ofthe criteria. If the index = 1, then the probabil­
ity of endorsing the item for those who meet none ofthe criteria is no different 
than for those who have met one or more ofthe criteria—clearly indicative of an 
item with poor diagnostic power for its corresponding criteria. The bigger the 
index, the better; a value of 2 or more means the odds of endorsing the item for 
someone who meets one criterion are at least twice the odds for those who meet 
none of the criteria. The results of Templin and Henson (2006) revealed only 
three problematic items, 4,12, and 20, which had index values of 1.21,1.10, and 
1.10, respectively. For the remaining items, the lowest index was 2.80. Overall, 
the mean was 62.3, the median was 54.2, and the standard deviation was 57.0. 

Investigating the three items with low index values, Templin and Henson 
(2006) concluded that they performed poorly because they were poorly written 
or they should have been keyed for different criteria, or the items were inappro­
priate for their college-age population. For example, Item 4 was "I enjoy talk­
ing with my family and friends about my past gambling experiences," and 
Criterion 1 (PREO, "Is preoccupied with gambling") was assigned to it. The sen­
tence focuses on whether subjects "enjoy" talking with friends and family—an 
activity a college student would endorse even if he or she were not a pathologi­
cal gambler. Such information about item quality provides valuable feedback 
for modifying and improving the assessment instrument. 

Model fit statistics. Using MCMC posterior distributions, Templin and 
Henson (2006) conducted a PPM check comparing model-predicted statistics 
with observed data statistics. In particular, for each item-pair they calculated 
the Pearson correlation and Cohen's K. The RMS difference between observed 
and predicted was 0.042 for the correlations and 0.038 for the Cohen's K values, 
both of which indicate good fit to the data. 

External validity. In a separate study not reported in Templin and Henson 
(2006), the researchers collected complete data on 112 experienced gamblers 
who filled out the GRI and SOGS. As mentioned previously, SOGS is one ofthe 
most commonly used instruments for studying pathological gambling. It con­
sists of 20 dichotomous (yes/no) items, and an affirmative response to any 5 items 
indicates an individual is probably a pathological gambler. Lesieur and Blume 
(1987) validated the instrument by comparing its results with clinical diag­
noses for a large number of individuals. Templin and Henson (2006) estimated 
the DINO diagnostic model parameters for these data, again using MCMC with 
a total chain length of 50,000 and a burn-in of 40,000. Inspection of the chain 
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plots indicated convergence occurred for all the model parameter estimates, and 
the posterior standard deviations were surprisingly small (typically 0.01-0.05 
for item parameter estimates of 0.10-0.60, respectively) given the relatively 
small sample size. 

The fitted model was then used to estimate the probabilities of meeting each 
ofthe 10 criteria for each ofthe 112 gamblers, and those probabilities were then 
used to estimate each gambler's PPG (i.e., probability of pathological gambling, as 
described previously). If PPG was 0.5 or more, an individual was classified as a 
pathological gambler. They then compared the SOGS pathological gambling clas­
sification results with those of their diagnostic model and found that 89.2% of 
the classifications from their DINO analysis ofthe GRI data were consistent with 
classifications made by SOGS. Correcting for agreement by chance, a Cohen's 
K value of 0.69 (p < .001) was calculated indicating substantial agreement beyond 
chance (0 indicates chance agreement, and 1 indicates perfect agreement). 

SCORE REPORTING. Although Templin and Henson (2006) did not develop 
formal score reports, they did present, as mentioned above, two types of scoring 
statistics. The first type was a profile of each individual's standing on the 10 cri­
teria in terms of his or her estimated probability of meeting each criterion. The 
second statistic was each individual's PPG. Specifically, Templin and Henson 
(2006) presented detailed results for three individuals to highlight the advan­
tages of diagnosing the individual criteria in addition to the overall diagnosis of 
pathological gambling. These results are presented in bottom part of Table 3.2. 
Individuals A and B were both diagnosed as not being pathological gamblers. 
However, although Individual A had a high probability (0.77) of meeting one 
criterion (RETU) and very low probabilities (less than 0.15) on all the others, 
Individual B had very high probabilities (0.99 or more) of meeting four criteria 
(PREO, INCR, IRRI, and ESCA) and low probabilities (less than 0.30) on the 
others. Thus, Subjects A and B are much different from each other in terms of 
their gambling behaviors and activities and, seemingly, in terms of their risk of 
becoming pathological gamblers; but the overall classification (not being patho­
logical gamblers) gives no indication of these differences. Such differences may 
be helpful in some cases for treatment purposes, especially in regard to identi-
fying those at risk of becoming pathological gamblers and taking preventative 
measures in that regard. 

Concluding Remarks 

This chapter has focused on the practical challenges of developing and carrying 
out the diagnosis of examinee attributes using IRT-based parametric latent 
class models. To facilitate the discussion, a general organizing scheme was pre­
sented for the diagnostic assessment implementation process consisting of six 
general steps: (a) description of the assessment purpose, (b) description of a 
model for the latent attributes, (c) development and analysis ofthe assessment 
tasks, (d) specification of a psychometric model, (e) estimation of model param­
eters and evaluation ofthe results, and (f) development of systems for scoring 
and reporting. 
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As discussed in the chapter, the steps of a successful implementation process 
are not strictly sequential but require considerable interaction and feedback 
between them. In particular, because of the diversity of expertise demanded by 
the different steps, close collaboration is required among users, test designers, 
cognitive psychologists, and psychometricians. Research supporting the com­
ponents ofthe implementation process was shown to be well developed in terms 
of models, estimation techniques, and model-checking statistics. It is hoped that 
the broadly conceived implementation framework presented here provides a use­
ful starting point for helping practitioners think more clearly and thoroughly 
about diagnostic assessment, especially in regard to IRT-based latent class 
models. The implementation framework presented here is certainly not intended 
to be the definitive word on how to construe diagnostic assessment—practitioners 
are strongly encouraged to think of it as only a starting point and to adapt and 
make changes as needed to better fit their own specific settings. 

To demonstrate the implementation process for conducting diagnostic 
analyses with IRT-based latent class models, this chapter presented two real-
data examples, one in an educational setting and the other in a psychological 
setting. All six components ofthe implementation process were discussed for 
each example so that readers could get a more concrete understanding of the 
abstract descriptions given earlier in the chapter and also so that they could 
begin to imagine how such analyses might be carried out in their own assess­
ment settings. 

In summary, the overarching theme ofthe chapter is that successful imple­
mentation of diagnostic assessment, from design to scoring, requires a team 
effort among a variety of professionals. Compared with traditional applications 
of unidimensional (single scale) IRT models to single-score tests, multidimen­
sional (multiple skills) diagnostic assessment requires significantly increased 
complexity while also yielding significantly richer results about the subjects and 
the assessment tasks. The next step in the development of IRT-based latent 
class diagnostic assessment appears to be in its application to actual operational 
settings, in particular in terms of validity studies. Given the advanced state of 
statistical tools for IRT-based latent class skills diagnosis, such studies could 
take place in the context of pilot studies in operational testing programs, 
thereby advancing skills diagnosis to the threshold of operational status. In 
particular, in educational assessment settings there is a great need for stan­
dardized tests that provide formative assessment to help instruction and learn­
ing. Furthermore, given the advanced state of diagnostic testing in detecting 
and treating psychological disorders, IRT-based latent class models seem pro­
pitiously positioned to have, perhaps, an even more immediate and positive 
impact in this area of application. 
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Cognitive Psychometrics: Using 
Multinomial Processing Tree Models 

as Measurement Tools 

William H. Batchelder 

The main goal of this chapter is to describe an increasingly popular approach 
to model-based measurement of latent cognitive processing capacities such as 
memory storage, memory retrieval, stimulus discrimination, and logical infer­
ence. The approach uses a family of graphic tree models for categorical data 
called multinomial processing tree (MPT) models. MPT models were initially 
developed as a family of information processing models to study normal cognition 
in specific experimental paradigms in cognitive psychology (Batchelder & Riefer, 
1986, 1990, 1999; Riefer & Batchelder, 1988). More recently, MPT models have 
been used as psychological assessment tools to measure how special populations 
differ in specific cognitive processing capacities (e.g., Batchelder, 1998; Batchelder 
& Riefer, 2007). Riefer, Knapp, Batchelder, Bamber, and Manifold (2002) pro­
vided a good example of this approach, and it is discussed in some detail later in 
this chapter. Because the use of MPT models for model-based measurement 
departs from the usual way that cognitive models are used, our research group 
calls this approach cognitive psychometrics. Cognitive modehng has been a pop­
ular theoretical approach in experimental psychology since the 1950s, and by 
now there are several hundred cognitive models that qualify as parametric sta­
tistical models. Typically, cognitive models are theoretically based and designed 
for data collected in tightly constrained experimental paradigms, and as such 
they have limited applicability outside of their intended domains. This prop­
erty differentiates cognitive models from data analysis models such as analysis 
of variance, linear regression, and log-linear models, in which the models are 
used across a wide range of scientific problem areas. Normally, cognitive mod­
els are used as theoretical tools to understand basic cognitive processes rather 
than as measurement tools. There are several exceptions to this norm; for 
example, there are a wide range of measurement applications of signal detec­
tion models (e.g., MacMillan & Creelman, 2005), paired-comparison scaling 

This chapter was written with support from National Science Foundation grants to A. K. Romney 
and W. H. Batchelder (Co-PIs, SES-0136115) and X. Hu and W. H. Batchelder (Co-Principal 
Investigators [Co-PIs], SES-0616657), and a grant from the Alzheimer's Association to W. H. 
Batchelder and E. Batchelder (Co-PIs, nRG-03-6262). 
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models (e.g., David, 1988), and models for analyzing confusion matrices (e.g., 
Takane & Shibayama, 1992). Our development of MPT models as assessment 
tools discussed in this chapter is also a departure from the normal use of cog­
nitive models. 

The other chapters in this volume are examples of psychometric models from 
the areas of item response theory (IRT) and structural equation models that are 
primarily used to model differences in individuals and groups rather than as 
basic tools to understand normal cognition. This difference motivates a second­
ary goal ofthe chapter, which is to compare and contrast cognitive and psycho­
metric modeling. This discussion includes information on the early history of 
academic psychology to help facilitate an understanding of some of the differ­
ences between cognitive and psychometric modeling, especially in how the 
parameters are defined and how the models are analyzed. Nevertheless, it is 
shown that parametric statistical models in both areas share many properties, 
especially the basic data stmcture that they apply to. 

The chapter is divided into two main sections. The first section describes the 
class of MPT models as a natural way to model information processing behavior 
and is divided into four subsections. The first subsection presents a detailed 
example of an MPT model that can separately measure memory storage and 
memory retrieval capacities in a free-recall task. In the second subsection, an 
application ofthe example MPT model to the assessment of storage and retrieval 
capacities in individuals with schizophrenia and organic alcoholics is presented. 
The third subsection formally defines the class of binary MPT models and dis­
cusses the standard approach to statistical inference for these models as well as 
some of their additional statistical and mathematical properties. The final sub­
section reviews some of the applications of MPT models to explain processing 
deficits in special populations. 

The second section of the chapter compares and contrasts cognitive and 
psychometric modeling. It is divided into three subsections. In the first, a review 
of the early history of psychology explains the origin of the division of labor 
between the study of normal cognition and the study of individual differences in 
cognition. Then the next subsection focuses on some of the similarities and dif­
ferences between cognitive models and IRT models. The final subsection pro­
vides some ways that ideas from IRT models might be incorporated productively 
into MPT models. In particular, it describes some recent work that develops ran­
dom effects and hierarchical versions of MPT models. 

T h e N a t u r e of M P T Mode l s 

The idea for formalizing the class of MPT models came originally from categor­
ical data modeling in statistical genetics (e.g., Elandt-Johnson, 1971). Many 
models in statistical genetics have a graphic tree structure because the genes of 
offspring depend on the genes of their parents, and this property iterates across 
several generations. The tree stmcture of these models is suggestive ofthe typi­
cal situation in cognitive information processing because a given manifest cog­
nitive act may be viewed as following from a conditional sequence of latent 
cognitive microacts. For example, a correct recognition response to an event 
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from the past may occur because there is attention to the original event, then 
storage and maintenance of a memory trace ofthe event, and finally subsequent 
recognition of the event given the trace. The failure of any of these microacts 
leads to an alternate processing sequence and quite possibly to a different recog­
nition response. This view suggests that the likelihood of a particular cognitive 
microact is conditional on the previous sequence of microacts. This conditional 
branching structure is difficult to represent in the language of general linear 
models or log-linear models because such models most naturally represent a 
manifest response as the result ofthe simultaneous occurrences of various main 
effects and interactions of underlying latent variables. Thus probabilistic tree 
models were viewed as a natural way to capture the temporal branching char­
acter of information processing sequences. Riefer and Batchelder (1988) first 
described MPT models as a special class of parametric models for product 
multinomial data structures, and Hu and Batchelder (1994) formalized the 
class of models and provided a classical approach to inference at the class level. 
Batchelder and Riefer (1999) provided a review of MPT modeling, including a 
discussion of over 80 applications of MPT models, and additional applications 
are discussed in Batchelder and Riefer (2007). Before describing in general the 
properties of MPT models, I provide in the following section an example of an 
MPT model along with its use to measure differences in information processing 
capacities between special populations. 

An MPT Model for Clustering in Free-Recall Memory 

An example of an MPT model is one that was designed to disentangle cluster 
storage from cluster retrieval in a standard free-recall memory paradigm 
(Batchelder & Riefer, 1980,1986). The experimental paradigm involves a study 
list consisting of clusterable pairs of words (e.g., lawyer, teacher; daisy, rose) and 
singletons (i.e., items without a category partner). The participants study each 
word in the list one at a time and are later given a memory test in which they are 
asked to recall the studied items in any order. Recall of each pair is scored into 
the following four mutually exclusive categories: (a) Ci, both items recalled con­
secutively; (b) C2, both items recalled nonconsecutively; (c) C3, one and only one 
item recalled; and (d) C4, neither item recalled. The model postulates two pro­
cessing trees, one for the pairs and one for the singletons; however, in the exam­
ple discussed, the list used did not have any singletons, so Figure 4.1 presents 
just the processing tree for the clusterable pairs. 

The model postulates three parameters, c, r, and u, each designed to mea­
sure a different latent cognitive process. The parameter c measures the probabil­
ity that the members of a pair are clustered during study and stored in memory. 
Parameter r is the conditional probability that a stored cluster is retrieved from 
memory during the recall test, and parameter u is the conditional probability 
that a word in a pair that was not clustered is recalled as a singleton. Because 
all three parameters are interpreted as probabilities, they must satisfy 0 < c, r, 
u < 1. Notice in Figure 4.1 that the parameter u appears several times in the 
tree. Here it reflects the assumption that conditional on cluster failure, with 
probability 1 - c, each item acts independently as a singleton. 
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Figure 4.1. The processing tree for the pair-clustering model. 

The assignment of categories to branches is motivated by psychological con­
siderations and simplifying assumptions. The top branch in Figure 4.1 has a 
probability cr, which is the probability of both storing and then retrieving the 
cluster. The model assigns this branch to category Ci on the assumption that 
items in retrieved clusters are recalled consecutively. The next branch has prob­
ability c(l - r), representing successful cluster storage but unsuccessful retrieval. 
This branch is assigned to category d , indicating recall of neither item in the 
pair. Notice that this is one of two branches that lead to category d , the other 
being the lowest branch of the tree representing unsuccessful cluster storage 
coupled with recall failure on both items in a pair. In this case, P^CJ = c(l - r) + 
(1 - c)(l - u)2. A simplifying assumption in the model concerns the recall of non-
clustered pairs. Notice that with probability (1 - c)u2, items in a pair are not 
clustered, but both are independently recalled. This branch is assigned to cate­
gory C2, reflecting nonconsecutive recall ofthe two items in a pair. This assump­
tion is an approximation because there is a small chance for two nonclustered 
items to be recalled consecutively; however, it greatly simplifies the analysis of 
the model while maintaining the main processing stages in the task. 

The pair-clustering model is like many other MPT models in that it postu­
lates parameters that tap latent processing capacities that combine to yield man­
ifest categorical responses. In this case, the processes are cluster storage, cluster 
retrieval, and the recall of nonclustered items. In a typical MPT model, there is a 
many-one relationship between processing branches and response categories; 
however, a necessary condition for model identifiability (different model param­
eters generate different probability distributions) is that there are fewer param­
eters than response categories. The pair-clustering model in Figure 4.1 has six 
branches, four response categories, and three parameters, and model identifia­
bility is easily established (see Batchelder & Riefer, 1986). 
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To justify the use of an MPT model to interpret the effects of experimental 
manipulations on latent cognitive capacities, it is important to validate the sub­
stantive interpretations of the parameters. Usually validation is argued by 
showing face validity ofthe model, namely, that the parameters change in pre­
dictable ways when standard, well-understood experimental manipulations are 
conducted. For example in the pair-clustering model, a manipulation such as 
additional study time or a short spacing (lag) between the items in a clusterable 
pair should facilitate clustering and therefore should result in an increase in 
estimates ofthe parameter c. On the other hand, presenting retrieval cues after 
study but during recall should increase cluster retrieval r but should not affect 
cluster storage c. The validity ofthe pair-clustering model has been established 
through its successful application to these as well as several other experimental 
manipulations that on their face should have predictable effects on storage and 
retrieval processes in human memory (see Riefer et al., 2002). Once the model 
has been validated it can be used as a tool to measure the separate effects of 
experimental variables on cluster storage as measured by c and cluster retrieval 
as measured by r. 

The pair-clustering model was first used to understand the role of lag 
between clusterable items in free recall (Batchelder & Riefer, 1980). The lag is 
defined as the number of unrelated words that appear between the presenta­
tions ofthe members of a clusterable pair in the study list. It was known that 
when a word is repeated in a free-recall study list, item recall probability often 
increases with increasing lag between the repetitions. This is a version of the 
well-known advantage in recall performance of spaced versus massed practice. 
However, a number of studies on the lag for clusterable pairs failed to create a 
clear relationship between item recall and lag. In some experiments short lags 
created better item recall, and in other studies long lags created better item 
recall. Notice that from the model, the probability of item recall (R) is given by 
Pr(R) = Pr id ) + Pr(C2) + Pr(C3)/2 = cr + (1 - c)u. It is easy to see that this expres­
sion involves the parameters for all three latent processes in the model, and if 
the effects of lag are different on each parameter, various relationships between 
lag and item recall probability are possible. 

Batchelder and Riefer (1980) showed in several experiments that controlled 
the spacing variable that estimates ofthe cluster storage parameter (c) decreased 
with lag, and estimates ofthe cluster retrieval parameter (r) increased with lag. 
The result that cluster storage decreased with lag was attributed to the well-
known importance of instance contiguity in forming associations. The increase of 
cluster retrieval with spacing was attributed to the advantage of nonoverlapping 
retrieval contexts, namely that the retrieval cues for each item in a pair have less 
redundant overlap as the spacing between the items becomes greater. This is one 
of the explanations for the advantage of spaced practice in the repeated-word 
example discussed earlier. The application ofthe pair-clustering model to under­
stand lag effects illustrates a general advantage of MPT models in that they pro­
vide model-based methods for the separate measurement of latent cognitive 
capacities that combine to produce manifest category responses. 

A variety of validated MPT models have been invented for different cogni­
tive paradigms, and they have been used in a number of experimental studies 
reviewed in Batchelder and Riefer (1999). The psychological research areas in 
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which these models have appeared include proactive and retroactive interference 
in memory, the effects of bizarre imagery on memory, memory for the source of 
information (source monitoring), information pooling, the process dissociation 
procedure, eyewitness memory, hindsight bias, object perception, speech per­
ception, letter identification, propositional reasoning, the confirmation bias, 
social cognition, and social networks. Also, there have been a number of recent 
applications of MPT models to assess cognitive capacities in special populations; 
these are discussed at the end of this main section. 

An Application of MPT Modeling to Special Populations 

Riefer et al. (2002) used the pair-clustering model to examine storage and 
retrieval deficits in two well-studied clinical populations: people with schizophre­
nia and alcoholics with organic brain damage. They matched male groups of 
schizophrenic individuals and organic alcoholics, respectively, with appropriate 
control groups, equating the comparison groups on age and education. A great 
deal of research on both schizophrenic individuals and organic alcoholics has 
shown that both groups suffer episodic memory problems compared with normal 
controls. One issue addressed by theorists in these areas is whether these deficits 
are mainly due to problems with storage or with retrieval. But as Riefer et al. 
pointed out, research and theorizing on this issue is mixed and inconclusive in 
both areas, with some theorists in each area concluding that the problem is 
mainly one of storage and others concluding that the problem lies with retrieval. 
It is under these circumstances that formal modeling can help clarify these theo­
retical issues by providing a model-based measure of the underlying cognitive 
processes in question. 

Each group in the Riefer et al. (2002) study memorized a list of 20 category 
pairs over six study-test trials in which the lag between members of a category 
pair was large. The pair-clustering model was used to obtain maximum likeli­
hood estimates (MLEs) for the storage and retrieval parameters for both groups 
on each ofthe six trials (the next subsection describes estimation theory for MPT 
models). These estimates are displayed in Figure 4.2 for the schizophrenic study 
and in Figure 4.3 for the organic alcoholic study. 

The MLEs ofthe cluster storage parameter c are displayed in the left graphs 
of the two figures, and the MLEs of the corresponding estimates of the cluster 
retrieval parameter r are displayed in the right graphs. The two figures show that 
the MLEs are nondecreasing over trials. One would expect that the parameters 
for both cognitive capacities would increase with repeated study trials, and in 
fact the MLEs were estimated under this order restriction (for details on order-
restricted inference for MPT models, see Knapp & Batchelder, 2004). For the 
schizophrenic group, Riefer et al. (2002), using likelihood ratio hypotheses tests, 
concluded that there were both storage and retrieval deficits compared with the 
control group. However, the deficit was stronger for retrieval, occurring after the 
first trial and continuing throughout the later trials as well. In contrast, the dif­
ferences in storage between the schizophrenic individuals and the controls were 
not as pronoxmced, and they only became statistically significant on the later tri­
als when fatigue might have set in. 
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Figure 4.2. Maximum likelihood estimates of c (left panel) and r (right panel) for the 
schizophrenics and their controls under the assumed order constrains. 

A similar pattern to that found in the schizophrenic study occurred for the 
organic alcoholics, with retrieval deficits being stronger than storage deficits 
and occurring on earlier trials. What was particularly striking about the organic 
alcoholics was their performance across the six study-test trials. Prior research 
has shown that alcoholics with organic brain damage often exhibit minimal 
improvement in their recall of a list of words even after multiple presentations 
of that list, and the modeling analysis suggests that this deficit is due to prob­
lems with retrieval and not storage. Although the organic alcoholics showed mod­
est improvement in their storage of clusters over trials, their ability to retrieve 
clusters was basically low and lacked any evidence of improvement across the 
six list presentations. 

In both studies in Riefer et al. (2002), the authors were concerned that indi­
vidual differences between participants within a group may have biased the 
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Figure 4.3. Estimates of c (left panel) and r (right panel) for the organic alcoholics and 
their controls. 
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conclusions because the primary analysis ofthe model leading to the estimates 
in Figures 4.2 and 4.3 treated the data within a group as a sample of independ­
ent and identically distributed (i.i.d.) observations from the model. The soft­
ware package (see next subsection) that was used to obtain the MLEs and test 
hypotheses about the parameters includes an option to simulate and analyze 
data from the model under the assumption that the parameters c and r vary 
independently from participant to participant with beta distributions (see 
Equation 10). Although Riefer et al. (2002) showed that the hypothesis tests and 
MLEs in the studies were changed somewhat under simulations that injected 
modest amounts of variability in the parameters, none ofthe major conclusions 
presented in the article were changed by this fact. The simulation work fol­
lowed the logic of an extensive simulation study of the pair-clustering model 
under various sample sizes and amounts of parameter heterogeneity in Riefer 
and Batchelder (1991b). In the final part of this chapter, several approaches to 
incorporating participant heterogeneity into MPT models as random effects are 
described. 

Formal Definitions and Statistical Inference 

In this subsection, MPT models are defined. First, the class of binary MPT 
(BMPT) models for a single category system is described in detail. Then some of 
the other types of tree structures that have appeared in the MPT literature are 
informally presented. Any BMPT model has four aspects: (a) observable cate­
gories, (b) latent parameters, (c) tree architecture, and (d) computational mles. 
These are described as follows: 

• Observable categories. The data stmcture for a BMPT model consists of 
observations that fall into K mutually exclusive and exhaustive observ­
able response categories, C = {Ci, . . . , Cy. The categories correspond to 
ways that a participant's response to some experimental event is scored. 

• Latent parameters. A BMPT model has S parameters {0i, . . . , 0S). The 
parameters are functionally independent, and each is free to vary in 
the open interval (0,1). Thus, the parameter space for the model is 0 = 
(0 i , . . . , 8S) G Q = (0,l)s. Each parameter 0sis interpreted as the proba­
bility ofthe successful execution of some latent cognitive microact, and 
(1 - 0s) is the probability of its failure. Some examples are storing an 
item in memory, accessing a certain fact from semantic memory, mak­
ing a particular logical inference, discriminating the source of a partic­
ular memory, or guessing a specific response to a question. In contrast 
to IRT models, the parameters are not person parameters but parame­
ters that tap various cognitive capacities involved in the task that is 
being modeled. 

• Tree architecture. The tree architecture is a full binary tree with a single 
initial node (the root), intermediate nodes, and terminal nodes (leaves). 
Each nonterminal node is associated with a single parameter 0S and a 
binary branching into two nodes (children) that represent, respectively, 
the success, with probability, 85, and the failure, with probability (1 - es), 

•mmm 
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of the latent cognitive microact represented by the parameter. Non­
terminal nodes also can be associated with fixed numerical values in the 
unit interval instead of parameters. Each leaf corresponds to one ofthe 
categories in C. Categories and parameters can occur several times in 
the tree (e.g., the model in Figure 4.1). 

• Computational rules. The final aspect of a BMPT is the computational 
rules that enable one to compute category probabilities in terms of the 
parameters. Because ofthe binary architecture ofthe tree, each BMPT 
consists of exactly (A +1) branches, where A is the number of nontermi­
nal nodes in the tree. Each branch is made up of a sequence of one or 
more parameterized or numerical links terminating in a particular cat­
egory. The model assumes that on each trial (observation), one of the 
branches is probabilistically selected, and the category at the end node 
of that branch is the observed category for that trial. The chosen branch 
for a trial depends on a sequence of binary choices at nonterminal nodes 
starting with the initial node. Each choice probability is given by the 
parameter or number associated with the corresponding node. This prob­
ability rule follows standard Markovian assumptions in decision trees 
and probabilistic automata. 

Given the above assumptions, it is easy to see that the probability ofthe ith 
branch terminating in category Ck denoted by B t t is a function ofthe parameter 
vector given by 

Pr(BiA|e) = r i f e-ne^(l-8 s)
t a s , (1) 

where aa, and biks are nonnegative integers representing the number of times 
8s and (1 - 8s), respectively, govern the probabilities associated with the links 
that comprise branch Bik, and /•» is the product ofthe numbers on the links of 
B ih, or set to one if there are no numerical links on B ik. 

Let Ik be the number of branches in the model tree that terminate in cate­
gory Ck, then manifest category probabilities are given for all k = 1 , . . . , if by 

Pr(C*|e) = Jpr(B*|0). (2) 

The sum/product form of Equation 2 coupled with Equation 1 implies that 
category probabilities are finite degree polynomials in the parameters of the 
model. Further, it is clear from the form of Equations 1 and 2 that although 
branch probabilities are linear in the log ofthe probabilities, category probabil­
ities are not. So BMPT models are not a special case of the class of log-linear 
models. Given their structure, it is easy to see that for any well-formed BMPT, 
K 

XPrfC* |e) = 1, for all 0 € Q. Thus, any BMPT defines a parameterized subset of 
*=i 

all possible probability distributions over the K categories. 
There are two main generalizations of BMPTs that have been developed in 

the MPT literature. The first involves allowing more than two links at some 
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internal nodes ofthe tree. These multilink MPT models are designed to handle 
the case where more than two latent cognitive microacts are possible at some 
intemal nodes, for example, in which there are several ways to store an item in 
memory or in which there are several possible guesses to be made with imperfect 
memory. Another important generalization of BMPTs allows the data stmcture 
to include two or more disjoint systems of categories. In this formulation, each 
disjoint category system is modeled by a separate tree but all link probabilities 
are specified in terms of a single common parameter set. Multitree MPTs arise in 
many cognitive experiments involving within-participant designs, in which a 
participant is required to respond to items from several experimentally defined 
types. For example, the pair-clustering model discussed earlier falls into this 
class when the recall study list has singletons as well as clusterable pairs. Other 
examples come from recognition memory paradigms; for example, in yes/no 
recognition memory experiments there are two types of items, namely, old items 
and new distracters. Multitree MPTs also arise in between-group experimental 
designs, in which each group has the same tree stmcture, and a theorist wants 
to test hypotheses about parameter equality across groups to examine group dif­
ferences. If one has a sample (under i.i.d. conditions) from each ofthe corre­
sponding category systems and if the systems are independent, then the data 
structure in this case is a product multinomial structure, and multitree MPT 
models become parametric product-multinomial models. Hu and Batchelder 
(1994) provided the details for these two generalizations of BMPT models. 

The main purpose of defining classes of MPT models is that their inference 
can be developed at the class level rather than at the specific model level. Thus, a 
scientist is free to constmct a substantively interpretable model and utilize the 
general inference machinery to analyze it. This is in sharp contrast to many ofthe 
more complex cognitive models that have been published, in which the modelers 
have developed special ways to analyze their own particular model that do not 
transfer in a natural way to others' models. The main work on inference for MPT 
models assumes that one has access to a sample of size N > 1 from the model (a 
sequence of categorical observations of N i.i.d. random variables). In this case, 
the data structure for a BMPT is a parameterized multinomial distribution. 
Given the category count random variables AT*, for k = 1 , . . . , K, the BMPT model 
from Equations 1 and 2 defines the parametric family of distributions 

K 

Pr(<M>f=1=</i*>f=1 |e) = JV!n 

f ik s Y* 

Vi=l 8=1 

I A=I nk! 
(3) 

for all nonnegative integer vectors < re* >f=1 with Xre* = Wand 0 e (O,!)8. Notice 
*=i 

that the tree representation of a BMPT will specify the other values that occur 
in Equation 3, namely, K, S, and the /*, r^, arts, and 6^, for k = 1, . . . , K, s = 
1 , . . . , S, and i = 1 , . . . , Ik. 

The key to the statistical analysis of MPT models is the fact that if the 
latent counts that occur for each branch are known in addition to the manifest 
category counts, then the MLEs ofall the parameters can be written in a simple 
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closed-form expression. Hu and Batchelder (1994) showed this in general for a 
variety of MPT models, including the MPT models discussed in this chapter. To 
illustrate the idea, suppose that each branch of a BMPT model leads to a unique 
category, that is, 7* = 1 for all A = 1 , . . . , K, and thus the branch frequencies are 
the category counts, nk. Then it is easy to see that the MLE of each 83 is given by 

K 

0 s = i r ^ . (4) 

Y,nk -{aiks+hks) 
k=i 

Equation 4 represents the number of times a link with probability 8S is taken, 
divided by the number of times a node corresponding to parameter 8S is encoun­
tered. Both these quantities are easy to determine from the category counts. 
In other words, Equation 4 is just a version of the well-known fact that for a 
Bernoulli process the proportion of "successes" is the MLE for the probability of 
a success. 

The stmctural and parametric requirements of MPT models, especially 
those that pertain to Equations 1 and 2, are sufficiently restrictive to yield many 
consequences that are described in detail in Hu and Batchelder (1994). Most 
importantly, for members ofthe model family employing the EM (expectation-
maximization) algorithm (e.g., Dempster, Laird, & Rubin, 1977), statistical infer­
ence, including goodness-of-fit, point and interval parameter estimation, and 
hypothesis testing, is computationally straightforward to conduct. The EM algo­
rithm is a well-known iterative method for obtaining MLEs for certain statistical 
models, in which some of the data can be regarded as missing. In this case the 
missing data are taken to be the latent branch frequencies, subject to constraint 
by the observed category frequencies. The EM algorithm starts by selecting 
initial estimates for the branch frequencies and computes estimated MLEs, 0= 
(0 i , . . . , Os), ofthe parameters from Equation 4 using the estimated branch fre­
quencies. Then the branch frequencies are reestimated by their expectations 
using the estimated MLEs by the equation 

. lu-PrjflUe) 
ntk = 7 r v — . 

Pr(C*|0) 
(5) 

Equation 4 with the current estimates of the branch frequencies and Equa­
tion 5 are alternated until a stable fixed point is achieved. Under fairly gen­
eral conditions for MPT models, this algorithm is guaranteed to converge to a 
parameter vector 0 that corresponds to a local minimum of the log likelihood 
measure G2, the quantity whose global minimization yields the MLEs (Hu & 
Batchelder, 1994, Observation 4). 

The EM algorithm has a number of statistical advantages in working with 
MPT models. First, it is not necessary to specify step size when using the EM 
algorithm. Second, the simple structure of MPT models allows one to obtain 
closed-form expressions for the observed Fisher information matrix, and they 
can be used to provide asymptotic approximations to the variance-covariance 
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matrix of the parameter estimators at the end of the search. Most important, 
use ofthe EM algorithm for estimation, goodness-of-fit, and hypothesis testing 
enables statistical inference for the entire class of MPT models to be accom­
plished within a single programmable framework. In Hu and Batchelder (1994), 
the EM algorithm was extended for MPT models to the entire Read and Cressie 
family of goodness-of-fit statistics for categorical models (Batchelder, 1991; 
Read & Cressie, 1988). This family includes not only G2 but other traditional fit 
methods like minimum chi-square and modified minimum chi-square. 

There are several sources of software for analyzing MPT models that are free 
and Web-accessible (e.g., Hu & Phillips, 1999; see http://irvin.psyc.memphis. 
edu/gpt/). The software enables an investigator to represent the model as a spe­
cific set of equations like Equations 1 and 2 of this chapter. Then one can enter 
one or more sets of categorical data for the model and perform point estimation 
and confidence interval estimation of the parameters, conduct goodness-of-fit 
tests, and test hypotheses about the model's parameters both within one group 
and between groups. The software also enables the investigator to simulate data 
from a model, in which the possibility that different participants may have dif­
ferent parameter values is allowed. These simulations allow one to obtain point 
and confidence interval estimates when the sample size is not large enough to 
use asymptotic methods based on the likelihood function. 

There have been a number of statistical and mathematical results for BMPT 
models that hold at the class level. One result is that the class of BMPTs is 
"closed" under a variety of dimension-reducing and/or order-constraining restric­
tions on the parameter space. By closed I mean that if the parameters of a BMPT 
are restricted in certain ways, one can construct a new BMPT (without param­
eter restrictions) that is statistically equivalent to the original model with 
the restrictions on its parameters. Such results are important because when the 
parameter space of a BMPT is constrained, it is no longer a BMPT because 
the requirement of functional independence of the parameters is violated, 
thus the general class-level software is no longer applicable. However, because 
of the closure properties, an equivalent BMPT can be constructed, and it can be 
analyzed with the general software. Many of these closure properties are dis­
cussed in Knapp and Batchelder (2004) and Hu and Batchelder (1994). 

Application of MPT Models for Psychological Assessment 

The Riefer et al. (2002) study is just one of several applications of the pair-
clustering model to analyze differences in storage and retrieval processes in 
special populations. In an earlier study, Riefer and Batchelder (1991a) used the 
pair-clustering model to compare college students and elderly participants on 
storage and retrieval. In that study, the elderly population performed more poorly 
in recall memory because of retrieval deficits, not storage deficits. Also there 
have been a number of recent applications of other BMPT models to measure 
other cognitive capacities in special populations. Batchelder (1998) discussed 
a number of methodological issues that arise when MPT models are used for 
psychological assessment instead of experimentally designed studies, and 
Batchelder and Riefer (2007) provided a review of some of these applications. The 

http://irvin.psyc.memphis
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review included an MPT model for measuring storage and retrieval by Chechile 
(2004). Chechile's model has been used to explore the storage-retrieval bases 
behind a variety of memory phenomena in special populations, most notably in 
children with developmental dyslexia (Chechile, 2007). 

One large area of applications of MPT models is the study of memory for the 
source of information in clinical populations, including individuals with schizo­
phrenia. In these studies, participants received a list of items from two sources 
(male vs. female voice or presented auditorily vs. visually); later, they received old 
and new items and were required to discriminate the source of old items. These 
studies used the MPT models of source monitoring developed by Batchelder 
and Riefer (1990) and Bayen, Murname, and Erdfelder (1996). In addition, there 
are several studies that used MPT models to analyze data from tests in standard 
neuropsychological test batteries. For example, Batchelder, Chosak-Reiter, 
Shankle, and Dick (1997) developed a BMPT model for the free recall subtest 
ofthe neuropsychological test battery ofthe Consortium to Establish a Registry 
for Alzheimer's Disease (Morris et al., 1989), and Chosak-Reiter (2000) developed 
a BMPT model for the Boston Naming Test (Kaplan, Goodglass, & Weintraub, 
1983). One ofthe goals of modeling standard tests in diagnostic batteries is to 
better utilize the data that are collected. Standard scoring schemes for neuro­
psychological test batteries base their performance scores on selective aspects 
ofthe data, and a lot of potentially useful information for diagnosis is ignored. 
Another large area of application of MPT models is the process dissociation pro­
cedure (Jacoby, 1991, 1998). This task is related to the source monitoring task 
and is used to separate explicit recollection from feelings of general familiarity 
for the item. The process dissociation task has proven to be an important tool in 
studying amnesia among other memory phenomena. 

Comparing Cognitive and Psychometric Modeling 

Cognitive psychologists and psychometricians are quite active in inventing prob­
abilistic models and developing their statistical inference, and most psycholo­
gists with advanced knowledge of modem statistics work in these areas. Both 
cognitive models and models in test theory are developed to assess and under­
stand aspects of cognitive performance. For these reasons, it might seem natural 
that there would be a great deal of collaboration between workers in these fields, 
but in my experience such collaborations Eire rare, and workers in these areas are 
relatively isolated from and unfamiliar with each others work. These observa­
tions motivate the secondary goal of this chapter, which is to explore the differ­
ent approaches used in cognitive and psychometric modeling and to understand 
the bases behind the relative separation of these two groups of modelers. 

I will base my analysis on the working hypothesis that cognitive modelers 
and test theory modelers are relative disjoint groups of scholars. By this I mean 
that they do not often attend the same conferences, publish in the same jour­
nals, read and cite modeling work in each others' areas or collaborate on model­
ing projects. Most cognitive modelers identify with the Society for Mathematical 
Psychology and a variety of experimental psychology societies, and most psycho­
metric test theorists identify with the Psychometric Society and a variety of 
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applied statistics societies. Only a small fraction of these modelers attend the 
same annual meetings or have publications in both the Journal of Mathematical 
Psychology and Psychometrika, the flagship journals ofthe Society for Mathe­
matical Psychology and the Psychometric Society, respectively. Of course, there 
are exceptions to the working hypothesis at both the individual level and the 
society level, but in my experience the exceptions are not many. Further, I 
believe that the hypothesis well represents the "received view" of modelers in 
these two areas. A full scholarly analysis of the working hypothesis would 
require much empirical work comparing coauthorships, citation indices, and 
conference participation. 

Insights From the Early History of Psychology 

To an outsider, the fact that probabilistic modelers in psychology fall into two 
largely disjoint groups might seem puzzling. However, a brief inspection of the 
early history of psychology as a research and academic discipline provides one of 
the clues to this puzzle (for a similar view, see Cronbach, 1957). Academic psy­
chology started in the late 1800s, and its roots can be traced to scientific develop­
ments mostly in Germany and England. Most historians of psychology select 
Wilhelm Wundt and the establishment of his experimental psychology labo­
ratory at Leipzig Germany in 1879 as the start of academic psychology (e.g., 
Boring, 1957; Hergenhahn, 2008). Before Wundt's laboratory, the German tradi­
tion was established with the scientific work of Johann Midler, Hermann von 
Helmholtz, Ernst Weber, Gustav Fechner, Franciscus Donders, as well as Wundt 
and many others. This work provided the main underpinnings of the field of 
experimental psychology. The key characteristic of this work that provides part 
of the clue for the current puzzle is that it was almost entirely concerned with 
understanding how basic human processes function in such areas as sensation, 
perception, attention, and memory. In particular, German experimental psychol­
ogy produced relatively little research on how humans differed from one another. 

On the other hand, the psychological tradition in England was fairly sepa­
rate from the German tradition, and it is the English tradition that concerned 
itself with individual differences. The English tradition in psychology can be 
traced to the work of Charles Darwin and especially to the work that followed 
in the spirit of Darwin's work. Darwin's theory of evolution (1859, 1871) was 
grounded on several principles, not the least of which was the fact that individu­
als differ in their physical traits. His most psychological book was The Expression 
of Emotions in Man and Animals (Darwin, 1872), and in this work he attempted 
to explain the differences between and within species on the nature of emotional 
responses. Although Darwin's book concerning emotions was not that influential 
in the psychological movement in England, the work of Darwin's cousin, Sir 
Francis Gallon, set the stage for the emergence of English psychology. Edwin 
Boring (1957), in his major early history of experimental psychology, wrote, 

There can be no doubt that Sir Francis Galton (1822-1911) was the pioneer 
of a "new" psychology in Great Britton, that is to say, of an experimental 
psychology that was primarily, though not entirely, concerned with the 
problem of human individual differences, (p. 482) 
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Galton's psychological concerns were mostly centered on measuring indi­
vidual differences between people on a variety of physical, personality, and 
cognitive traits. Galton's interests in individual differences led him to study 
differences in both physical and psychological traits in over 9,000 individuals. 
This work required Galton to develop statistical measurement tools like correla­
tion, the quintrix, and models for analyzing twin studies. In addition, Galton is 
a principal figure behind England's emergence as a center for the development 
of statistical theory as well as the related field of psychometrics. From this 
analysis, it should be clear why the psychometric approach to modeling has a 
historical tie to early English psychology and thus is heavily invested in the 
measurement of individual differences. Psychometrics as a field developed with 
close connections to the historical development ofthe field of statistics; for exam­
ple, statisticians who followed Galton, such as Karl Pearson, Charles Spearman, 
Roland Fisher, and William Gosset, contributed in major ways to both statistics 
and psychometrics. Indeed, efforts to solve statistical problems that arose within 
psychology are a major reason why the history ofthe field of statistics from the 
late 1800s on is so strongly tied to England (e.g., Porter, 1986; Stigler, 1986). 

What is missing so far in the solution to the puzzle of the relative separa­
tion ofthe cognitive and psychometric modeling groups is the nature of cognitive 
modeling itself. In the early German tradition in experimental psychology, seri­
ous mathematical modeling was confined to the areas of sensation, perception, 
and psychophysics, in which there were direct ties to the natural sciences, espe­
cially physics and physiology. Cognitive modeling came onto the scene much 
later in the 1950s with the origin of the field of mathematical psychology (see 
Batchelder, 2000). During the 1940s and 1950s, the information sciences devel­
oped many approaches that cognitive psychologists could use as the basis for 
constructing formal models of human cognition. These include automata theory, 
game theory, information theory, operations research, and many results in 
stochastic processes. A number of experimental psychologists became aware of 
these approaches, and workers in the information sciences began to do collabo­
rative work with psychologists. Since the stochastic learning models of Estes 
(1950) and Bush and Mosteller (1951), all subfields of cognitive psychology 
have many formal models, and a large number of these can be classified as 
parametric statistical models. Almost all ofthe applications of these models 
have the same properties, namely, that fairly homogeneous groups of partici­
pants are exposed to experimental manipulations in an effort to study the effect 
of the manipulations on the workings of normal cognition. Often there are 
interesting experimental phenomena that a cognitive model can explain given 
certain settings of its parameters, and discovering and explaining these phe­
nomena rather than measuring individual differences is the main driving force 
in cognitive modeling. 

Contrasting Cognitive Memory Modeling and Item Response Theory 

In this subsection, two active areas of modeling are compared, one from cognitive 
psychology and the other from psychometric test theory. One ofthe most active 
areas in cognitive modeling is human memory, and there are many parametric 
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stochastic models in this area. Although the focus is on memory models, models 
in other areas of cognition like categorization and choice are often similar in 
character. In test-theory modeling, the most active area is IRT, and most models 
in this area are also parametric stochastic models (e.g., Embretson & Reise, 2000). 
As explained later in this chapter, the data stmctures for these two kinds of 
models are very similar; however, the nature ofthe models and their associated 
statistical inference are quite different. 

Cognitive memory models are developed for list memory experiments, and 
models in IRT are developed mostly for tests of knowledge and ability. It turns 
out that the statistical structure of a typical list memory experiment in cognitive 
psychology and a typical psychometric ability test are quite similar. The data 
structure for a list memory experiment is a participant by item-event random 
matrix, X = iXif)NxM, where X^ is a random variable representing participant i's 
response to item-event./, i = 1,2,..., iV and./' = 1,2,..., M. The item-events (here­
after items) can refer to such things as to-be-remembered items (in which each 
participant is given the same list of items), particular types of items (e.g., stud­
ied items and new distracter items in recognition memory), serial positions (e.g., 
in a free-recall study list), or a group of related items (e.g., clusterable items in 
free recall). The response ofthe participant to an item is characterized by one or 
more behavioral indices such as a simple dichotomous score like "old/new," a 
response in a category describing memory retrieval, a confidence rating on an 
ordered category scale, or a response time on a continuous scale. 

In the case of IRT models, the usual data structure is also generally ofthe 
form, X = {Xij)NxM, where X^ is a random variable representing the performance 
of participant i on test i tem/ In this case, test items vary in difficulty, but each 
participant usually receives the same or an equivalent set of items, though there 
may be alternate test forms or the items may be ordered differently from partic­
ipant to participant. The performance measure may be a simple dichotomy such 
as "pass/fail," a more elaborate categorization as in ordered and unordered poly­
tomous models, or a continuous grade as in the scoring of essay items. Although 
it is usually the case that only a single performance measure is collected for each 
item, sometimes response latencies are also collected, and in the case of grading 
essay type questions, the scores of several judges may constitute the scoring of 
an item (e.g., Johnson & Albert, 1999). From the point of view of statistical the­
ory, there is very little difference between the standard data stmcture in cog­
nitive modeling and IRT (of course in adaptive testing participants may not 
receive comparable items and the analogy breaks down); however, as explained 
later, there are very substantial differences in the types of models that are 
developed for the data structure. 

Many cognitive memory modelers and item response theorists postulate 
parametric stochastic models to describe the data structure X. However, it is at 
this point that the two approaches differ quite dramatically. A cognitive memory 
model generally specifies parameters 0 = (Oj, . . . , 8S) e £2 c Res. Corresponding 
to each 0 G Q, the model specifies a mechanism that leads to a marginal distribu­
tion of each Xy. The BMPT model in Figure 4.1 is one example; however, most 
cognitive memory models have much more complex latent architecture and 
probability mechanisms than BMPT models (e.g., Clark & Grondlund, 1996; 
Rumelhart & McClelland, 1986; Shiffrin & Steyvers, 1997). 
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The parameters of a memory model have to do with both the architecture of 
the memory system (e.g., the size of a memory buffer, the number of features that 
encode an item, and the structure of memory search mechanisms), and the cog­
nitive processes that take place within the architecture (e.g., matching items, 
priming items, retrieval, guessing). Typically, parameters in memory models do 
not refer to individual participants, and individual items are reflected in the 
parameters only by allowing them to be different across sets of experimentally 
different item types (e.g., primacy items, old studied items, or new distracter 
items). Once the marginal distributions of the Xy have been specified for each 
item type, data are pooled over subsets of items ofthe same type and usually over 
participants as well, and these data are treated as a "sample" from the cognitive 
model. In the case of categorical data, if the AT participants are regarded as homo­
geneous and the Af items are ofthe same type, then the model for the data matrix 
X = (Xij)NlcM is technically a parameterized multinomial model like that in Equa­
tion 3. However, as mentioned, many ofthe memory models are much more com­
plex than BMPT models, and the complexity ofthe processes that lead from the 
parameters to the marginal distributions ofthe data may be too complicated to 
express in closed form and hence to conduct inference in the usual ways with 
parametric models. In these cases, modelers may derive some properties ofthe 
model to test without working with the likelihood function of the data, or they 
may simulate data from the model in an effort to find parameters that capture 
complex patterns of data across conditions and stimulus types. 

In almost all cases of cognitive modeling, researchers have to be aware ofthe 
possibility that unmodeled inhomogeneities in participants and/or items may 
violate the assumption of identically distributed marginal distributions, and if 
this happens it may flaw the statistical analysis of their data. Explicit discus­
sions ofthe impact ofthe pohcy of aggregating data over participants that differ 
in their parameters trace back to the seminal article of Estes (1956). In that arti­
cle, Estes demonstrated that individual participant differences can lead to group 
mean learning curves that obscure the shapes ofthe individual learning curves. 
Since Estes's article, many papers have appeared describing possible unfortu­
nate consequences of individual differences in aggregated data (e.g., Batchelder, 
1975; Heathcote, Brown, & Mewhort, 2000; Hintzman, 1980), but until recently 
very little work of a statistical nature has appeared in the cognitive modeling lit­
erature that provides positive statistical solutions to the problem of parameter 
inhomogeneity in aggregated data. Only in the past decade or so have some ofthe 
technical approaches to random effects modeling appeared in cognitive modeling 
papers (e.g., Karabatsos & Batchelder, 2003; Klauer, 2006; Lee & Webb, 2005; 
Rouder & Lu, 2005; Smith & Batchelder, 2008), and this is addressed later in this 
chapter. 

The nature of IRT models is quite different from that of cognitive models 
despite the similarity in the data structure. There is some controversy over what 
exactly counts as an IRT model, and indeed the same can be said about stochas­
tic memory models. For my discussion, I adopt what might be viewed as a narrow 
representation of IRT models, and in particular I suppress their representation 
as item characteristic curves (e.g., Lord & Novick, 1968). Almost all the param­
eters of an IRT model refer to specific participants (respondents) or specific 
items and can be written as <Py = (0;, a,), where the two component vectors refer, 
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respectively, to participant i's and i tem/s parameters, i = 1, . . . , iV andj = 1, 
. . . ,M. The 0; specify properties ofthe participants' abilities, and the a, specify 
properties ofthe items' difficulty with respect to a selected body of knowledge. 
Measuring individual differences in such things as participant ability, item dif­
ficulty, and item discriminability parameters is the main goal of IRT. Generally 
IRT models, unlike cognitive models, are not specified in terms of explicit 
cognitive processing steps that lead a participant to retrieve information from 
memory and process the information to produce a particular response to a 
test item. 

In IRT models, eachXy has its own marginal distribution, and there is only 
a single observation of each Xy in X to work with. Although the random variables 
do not satisfy the independence assumption, they usually satisfy the assump­
tion of conditional independence given the parameters. For example, if the data 
are dichotomous pass (l)/fail (0), the probability function of the data matrix is 
given by 

r -i N M 

Pr[X = (xij)NJ<p = <(Qi)l1 , (a J)%>yilYlPr[X l j=x, J \(di,a J)] (6) 
i=i M 

for all possible 1-0 matrices (xij)NxM. Unlike the case of cognitive modeling, 
analysis of an IRT model is not plagued with possible inhomogeneities in par­
ticipants and items because the model is explicitly designed to specify and 
measure them. 

It is possible to examine the contrast in approaches to modeling more 
completely by considering one ofthe simplest IRT models, known as the two-
parameter Rasch model (e.g., Fischer & Molenaar, 1995). That model assumes 
a single ability parameter 0j for each participant and a single item difficulty 
parameter oc, for each item, where - °° < 8,, a, < 0°. Then the component of the 
right-hand term of Equation 6 is written as 

Pr(Xy=l|ei,a,) = [l + exp-(e,-a,)r1. (7) 

It is well known that Equation 7 is a simple additive model in log-odds with no 
interaction between participants and items, that is 

logit [PriXij = 119*, a,-)] = 9/ - a,. (8) 

This model has essentially the same additive logit stmcture as several pop­
ular models in the cognitive area, such as Luce's (1959) paired comparison model 
(also known as the Bradley-Terry-Luce model), where the indices refer to choice 
objects, and Massaro's (1987) fuzzy logic model of perception (FLMP) for a two-
factor, two-response perception experiment (e.g., Crowther, Batchelder, & Hu, 
1995). For example, the FLMP is developed for factorial perception experiments 
in which an item is made up of a combination of levels from each oftwo factors, 
for example, 7y = (/•, gj), f e F, gj e G. The participant must classify each item into 
one of two perceptual categories Ci and C2 (e.g., one of two words in a speech 
recognition experiment). The model associates parameters with the factor levels, 
for example, fy e (0,1) for /• e F and fy e (0,1) forg, e G. The response equation 
for the model takes the form 
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fr[ftltt-*>I-».pJta-t')-a-|i,)- <9) 

for all (/i, g,-) e F x G . Equation 9 is a reparameterization of Equation 7, where 

/ ^ ^ 8; = In -—L— and a; = In 
V1 - fy J 

fi-M , and it is statistically equivalent to the two 
P; 

parameter Rasch model, with participants corresponding to the factor levels in F 
and items corresponding to the factor levels in G. 

Despite their formal similarity, statistical inference for the Rasch model dif­
fers from the paired comparison model and the FLMP model. Typically Luce's 
choice model and the FLMP are analyzed with data assumed to consist of inde­
pendent samples for each combination of i andj, which is the same way that most 
other cognitive models discussed earlier are analyzed. On the other hand, statis­
tical inference for the Rasch model is much more challenging because there is 
only one observation for each ofthe NxM random variables. This extra complex­
ity in inference characterizes the more complicated IRT models as well. Although 
there are ways to estimate all the parameters ofthe Rasch model separately as 
fixed effects, the more usual approach is to introduce random effects in the par­
ticipants, and sometimes even for the items (e.g., De Boeck, 2008). Thus hierar­
chical modeling has been a part of the statistical inference for IRT models for 
almost a half century; however, it is rarely used in paired-comparison models 
and never in FLMP modeling. In fact, as mentioned, only in the past few years 
has hierarchical modeling been used in the cognitive area. 

Incorporating Ideas From Psychometric Modeling Into MPT Models 

Unlike most cognitive models, BMPT models are sufficiently simple that ideas 
used in IRT modeling may aid in their analysis. In particular, the main draw­
back in the way that MPT models have been used as measurement tools concerns 
the lack of appropriate tools for handling individual differences. One approach 
proposed in Batchelder and Riefer (2007) assumes that the parameters of a 
BMPT are jointly distributed over participants at the hierarchical level as inde­
pendent beta distributions. To illustrate, let 8s be one of the parameters in a 
BMPT model and assume that participants' values of 9S are drawn i.i.d. from the 
beta distribution given by 

g(e.|Tu,Tiu)=rr
(Ty+

1!f'\e^1 (i-e.)^"1, (io) 
r(Ti i S) r(T2,s) 

where the two parameters ofthe beta distribution, TIJS and Tz,,, are in a parame­
ter space $ consisting of pairs of positive numbers, that is, (TU , X2,S) G $ = (0,°°)2, 
and r ( ) is the well-known gamma function (e.g., Evans, Hastings, & Peacock, 
2000). Then, assuming the parameters are independent, the joint distribution of 
the BMPT parameter is given by 

g[0=(01,...,es)|T=<x1,s,x2,s>f=1]=ng(es |T1,s,x2,s). a i ) 
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Such a formulation leads to a new class of models called beta-BMPTs because 
they bear a resemblance to the well known beta-binomial distribution (e.g., 
Evans, et al., 2000). Beta-BMPTs were already formulated as a simulation option 
in the software package by Hu and Phillips (1999), and Smith and Batchelder (in 
press) formulated them as Bayesian hierarchical models and developed their sta­
tistical theory using Markov Chain Monte Carlo methods. 

There are two drawbacks to the beta-BMPT approach to handling individual 
differences. First, beta-BMPT models do not specify any correlations over partic­
ipants between the cognitive parameters. This is an unfortunate consequence of 
the approach because many ofthe parameters in a BMPT are designed to mea­
sure cognitive capacities, and one would naturally expect such capacities to show 
a pattern of positive correlations. A second drawback of beta-BMPT models is 
that although they can handle participant heterogeneity, they assume item 
homogeneity within each participant. 

Klauer (2006) provided a general statistical approach to hierarchical latent 
class BMPT models that can specify parameter correlations. His approach was to 
create finite mixtures (see Titterington, Smith, & Makov, 1985) of BMPT models, 
where each component model is characterized by a fixed parameter vector. Stahl 
and Klauer (2007) presented software that can apply to hierarchical latent class 
BMPT models in general, which they called HMMTree models. Klauer's (2006) 
approach of using latent class BMPTs can specify correlations between parame­
ters because if the data come from a mixture of a few BMPTs, there will be corre­
lations between parameters depending on the locations ofthe parameter vectors 
for each component of the mixture. However, in applications to special popula­
tions in which one expects parameter variation to come from continuous distri­
butions with uni-modal marginals, the Klauer approach may not be completely 
satisfactory. 

Our group has been implementing a principled approach to the two limita­
tions of beta-BMPTs, both of which are motivated by ideas from psychometric 
test theory. The first idea involves introducing participant-item subscripts on 
the MPT parameters, that is, the parameters are written as 8y = < 8y,s >f=1. Of 
course, without additional specification, this approach introduces too many 
parameters, namely, NxMxS parameters for only NxM data points. However, 
the number of parameters can be greatly reduced by applying the simple two-
parameter Rasch model in the form of Equation 9 to each latent parameter, 
namely, 

fy;sp,>+(l-^>)(l-p,>) 
e*. = — ,"Mt?'s (12) 

where Vi, j , s, 0 < fy,,,, fy,s < 1. Our group calls these models Rasch-BMPT models, 
and in applying them one would not aggregate the data over either participants 
or items but would analyze them by using some of the approaches used to ana­
lyze IRT models. Karabatsos and Batchelder (2003) used this approach for a par­
ticular BMPT model called the general Condorcet model (see also Batchelder & 
Romney, 1988). Jared Smith of our group has been investigating Bayesian hier­
archical approaches to Rasch BMPTs. In his work, the four types of component 
parameters in Equation 12 have independent beta hyperdistributions. Another 
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approach under investigation is to model the probits ofthe component parameters 
with a multivariate Gaussian. Some of this work was presented in Batchelder 
and Smith (2006). 

The second idea is motivated by the fact that Rasch-BMPT models lack a 
natural correlation stmcture between the cognitive parameters. One approach 
to handle the correlation stmcture on the cognitive parameters is to implement 
an idea due to Spearman's (1904) analysis ofthe structure of intelligence. 
Spearman's idea was that there was a single general factor in intelligence that 
was operative across different subtests of intelligence. In this view, the true cor­
relation between different intelligence subtests is zero if general intelligence is 
partialled out. One way to incorporate this idea into Equation 12 is to specify a 
cognitive ability gj for each participant and specific factor £s for each parameter, 
and apply again the Rasch model in Equation 9 by specifying 

^ % A + ( l - f t ) ( l - * . ) ' ^ 

where 0 < gi, ts < 1. Viewed as a fixed effects model, when Equation 13 is incor­
porated into Equation 12, there are a total of N + S(M + 1) parameters, which 
is still less than the N x M data points. 

Early results with a Bayesian hierarchical implementation ofthe Spearman 
idea were reported in Batchelder and Smith (2006), but the jury is still out on the 
most productive computational approaches to analyze the specifications of partic­
ipant and item heterogeneity in BMPT models in Equations 12 and 13. There is a 
lot of work remaining to be done, and I am hopeful that psychometric researchers 
with experience in IRT modehng will join in our efforts to develop sound methods 
for model-based measurement of cognitive skills in special populations using 
MPT and other cognitive models. 

References 

Batchelder, W. H. (1975). Individual differences and the all-or-none vs. incremental learning con­
troversy. Journal of Mathematical Psychology, 12, 53-74. 

Batchelder, W. H. (1991). Getting wise about minimum distance measures. Journal of Mathematical 
Psychology, 35, 267-273. 

Batchelder, W. H. (1998). Multinomial processing tree models and psychological assessment. 
Psychological Assessment, 10, 331-344. 

Batchelder, W. H. (2000). Mathematical psychology. In A. E. Kazdin (Ed.), Encyclopedia of psychol­
ogy (Vol. 5, pp. 120-123). Washington, DC: American Psychological Association. 

Batchelder, W. H., Chosak-Reiter, J., Shankle, W. R., & Dick, M. B. (1997). A multinomial model­
ing analysis of memory deficits in Alzheimer's and vascular dementia. Journal of Gerontology: 
Psychological Sciences, 52B, 206-215. 

Batchelder, W. H., & Riefer, D. M. (1980). Separation of storage and retrieval factors in free recall 
of clusterable pairs. Psychological Review, 87, 375-397. 

Batchelder, W. H., & Riefer, D. M. (1986). The statistical analysis of a model for storage and retrieval 
processes in human memory. British Journal of Mathematical & Statistical Psychology, 39, 
120-149. 

Batchelder, W. H., & Riefer, D. M. (1990). Multinomial processing models of source monitoring. 
Psychological Review, 97, 548-564. 

Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process 
tree modeling. Psychonomic Bulletin & Review, 6, 57-86. 



92 WILLIAM H. BATCHELDER 

Batchelder, W. H., & Riefer, D. M. (2007). Using multinomial processing tree models to measure cog­
nitive deficits in clinical populations. In R. W. J. Neufeld (Ed.), Advances in clinical cognitive sci­
ences: Formal models and assessment of processes and symptoms (pp. 19-50). Washington, DC: 
American Psychological Association. 

Batchelder, W. H., & Romney, A. K. (1988). Test theory without an answer key. Psychometrika, 
53, 71-92. 

Batchelder, W. H., & Smith, J. B. (2006, June). Modeling subject and item differences in multino­
mial processing tree models. Paper presented at the Intemational Meeting ofthe Psychometric 
Society, Montreal, Canada. 

Bayen, U. J., Murname, K., & Erdfelder, E. (1996). Source discrimination, item detection, and multi­
nomial models of source monitoring. Journal of Experimental Psychology: Learning, Memory, & 
Cognition, 22, 197-215. 

Boring, E. G. (1957). A history of experimental psychology (2nd ed.). New York: Appleton-Century-
Crofts. 

Bush, R. R., & Mosteller, F. (1951). A mathematical model for simple learning. Psychological 
Review, 58, 313-323. 

Chechile, R. A. (2004). New multinomial models for the Chechile-Meyer task. Journal of Mathema­
tical Psychology, 48, 364-384. 

Chechile, R. A. (2007). A model-based storage retrieval analysis of developmental dyslexia. In W. J. J. 
Neufeld (Ed.), Advances in clinical cognitive sciences: Formal models and assessment of processes 
and Symptoms (pp. 51-80). Washington, DC: American Psychological Association. 

Chosak-Reiter, J. (2000). Measuring cognitive processes underlying picture naming in Alzheimer's 
and cerebrovascular dementia: A general processing tree approach. Journal of Clinical and 
Experimental Neuropsychology, 22, 351-369. 

Clark, S. E., & Grondlund, S. D. (1996). Global matching models of recognition memory: How the 
models match the data. Psychonomic Bulletin & Review, 3, 37-60. 

Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12, 
671-684. 

Crowther, C. S., Batchelder, W. H., & Hu, X. (1995). A measurement-theoretic analysis ofthe fuzzy 
logic model of perception. Psychological Review, 102, 396-408. 

Darwin, C. (1859). On the origin ofthe species by means of natural selection. London: John Murray. 
Darwin, C. (1871). The descent of man. London: John Murray. 
Darwin, C. (1872). The expressions of emotions in man and animals. London: John Murray 
David, H. A. (1988). The method of paired-comparisons. New York: Oxford University Press. 
De Boeck, P. (2008). Random item IRT models. Psychometrika, 73, 533-559. 
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via 

the EM algorithm. Journal ofthe Royal Statistical Society: Series B, 39, 1-38. 
Elandt-Johnson, R. C. (1971). Probability models and statistical methods in genetics. New York: 

Wiley. 
Embretson, S., and Reise, S. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum. 
Estes, W. K. (1950). Toward a statistical theory of learning. Psychological Review, 57, 94-107. 
Estes, W. K. (1956). The problem of inference from curves based on group data. Psychological 

Bulletin, 53, 134-140. 
Evans, M., Hastings, N., & Peacock, B. (2000). Statistical distributions. Wiley: New York. 
Fischer, G. H., & Molenaar, I. W. (1995). Rasch models: Foundations, recent developments, and 

applications. New York: Springer-Verlag. 
Heathcote, A., Brown, S., & Mewhort, D. J. (2000). Psychonomic Bulletin & Review, 7, 185-207. 
Hergenhahn, B. R. (2008). An introduction to the history of psychology (6th ed.). Belmont, CA: 

Wadsworth, Cengage Learning. 
Hintzman, D. L. (1980). Simpson's paradox and the analysis of memory retrieval. Psychological 

Review, 87, 398-410. 
Hu, X., & Batchelder, W. H. (1994). The statistical analysis of general processing tree models with 

the EM algorithm. Psychometrika, 59, 21-47. 
Hu, X., & Phillips, G. A. (1999). GPT.EXE: A powerful tool for the visualization and analysis of 

general processing tree models. Behavior Research Methods, Instruments, and Computers, 31, 
220-234. 

Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses 
of memory. Journal of Memory & Language, 30, 513-541. 



COGNITIVE PSYCHOMETRICS 93 

Jacoby, L. L. (1998). Invariance in automatic influences of memory: Toward a user's guide for the 
process-dissociation procedure. Journal of Experimental Psychology: Learning, Memory and 
Cognition, 24, 3-26. 

Johnson, V. E., and Albert, J. H. (1999). Ordinal data analysis. New York: Springer-Verlag. 
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston naming test. Philadelphia: Lea & Febiger. 
Karabatsos, G., & Batchelder, W. H. (2003). Markov chain estimation methods for test theory with­

out an answer key. Psychometrika, 68, 373-389. 
Klauer, K. C. (2006). Hierarchical multinomial processing tree models: A latent-class approach. 

Psychometrika, 71, 7-31. 
Knapp, B. R., & Batchelder, W. H. (2004). Representing parametric order constraints in multi-trial 

applications of multinomial processing tree models. Journal of Mathematical Psychology, 48, 
215-229. 

Lee, M. D., & Webb, M. R. (2005). Modeling individual differences in cognition. Psychonomic 
Bulletin & Review, 12, 605-621. 

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-
Wesley. 

Luce, R. D. (1959). Individual choice behavior. New York: Wiley. 
MacMillan, N. A., & Creelman, C. D. (2005). Detection theory: A user's guide (2nd ed.). Mahwah, 

NJ: Erlbaum. 
Massaro, D. W. (1987). Speech perception by ear and eye: A paradigm for psychological inquiry. 

Hillsdale, NJ: Erlbaum. 
Morris, J. C, Heyman, A., Mohs, R. C, Hughes, J. P., van Belle, G., Fillenbaum, G., et al. (1989). 

The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and 
neuropsychological assessment of Alzheimer's disease. Neurology, 39, 1159-1165. 

Porter, T. M. (1986). The rise of statistical thinking, 1820-1900. Princeton, NJ: Princeton University 
Press. 

Read, T. R. C, & Cressie, N. A. C. (1988). Goodness-of-fit statistics for discrete multivariate data. 
New York: Springer-Verlag. 

Riefer, D. M., & Batchelder, W. H. (1988). Multinomial modeling and the measurement of cognitive 
processes. Psychological Review, 95, 318-339. 

Riefer, D. M., & Batchelder, W. H. (1991a). Age differences in storage and retrieval: A multinomial 
modeling analysis. Bulletin ofthe Psychonomic Society, 29, 415-418. 

Riefer, D. M., & Batchelder, W. H. (1991b). Statistical inference for multinomial processing tree 
models. In J.-P. Doignon & G. Falmagne (Eds.), Mathematical psychology: Current develop­
ments (pp. 313-336). New York: Springer-Verlag. 

Riefer, D. M., Knapp, B. R., Batchelder, W. H., Bamber, D., & Manifold, V. (2002). Cognitive psy­
chometrics: Assessing storage and retrieval deficits in special populations with multinomial 
processing tree models. Psychological Assessment, 14, 184—201. 

Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application 
in the theory of signal detection. Psychonomic Bulletin & Review, 12, 573-604. 

Rumelhart, D. E., McClelland, J. L., & the PDP Research Group. (1986). Parallel distributed process­
ing: Explorations in the microstructure of cognition. Vol. 1: Foundations. Cambridge, MA: MIT 
Press. 

Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM-retrieving effectively 
from memory. Psychonomic Bulletin & Review, 4, 145-166. 

Smith, J. B., & Batchelder, W. H. (2008). Assessing individual differences in categorical data. Psycho­
nomic Bulletin & Review, 15, 713-730. 

Smith, J. B., & Batchelder, W. H. (in press). Beta-MPT: Multinomial processing tree models for 
addressing individual differences. Journal of Mathematical Psychology. 

Spearman, C. (1904). General intelligence objectively determined and measured. American Journal 
of Psychology, 15, 201-293. 

Stahl, C, & Klauer, C. (2007). HMMTree: A computer program for latent-class hierarchical multino­
mial processing tree models. Behavior Research Methods, 39, 267-273. 

Stigler, S. M. (1986). The history of statistics: The measurement of uncertainty before 1900. 
Cambridge, MA: Belknap Press of Harvard University Press. 

Takane, Y., & Shibayama, T. (1992). Structures in stimulus identification data. In F. G. Ashby (Ed.), 
Multidimensional models of perception and cognition (pp. 335-362). Hillsdale, NJ: Erlbaum. 

Titterington, D. M., Smith, A. F. M., & Makov, U. E. (1985). Statistical analysis of finite mixture 
distributions. New York: Wiley. 



This page intentionally left blank



Part II 

Model-Based Approaches 
to Isolating Entangled 

Constructs 



This page intentionally left blank



Unidimensionality and 
Interpretability of 

Psychological Instruments 

Jan-Eric Gustafsson and Lisbeth Aberg-Bengtsson 

One of the fundamental ideas in the constmction of psychological measure­
ment instruments is that each instrument should be homogenous and measure 
one attribute only. The idea of unidimensionality is a central assumption of most 
models within both classical test theory and modem test theory (e.g., Gulliksen, 
1950; Lord, 1980; McDonald, 1999). There are good statistical reasons for favor­
ing one-dimensional models to solve measurement problems. Reasons of inter­
pretation also speak in favor of a focus on unidimensionality, because if multiple 
attributes are measured, researchers will not know which attribute to invoke to 
account for a particular score. 

However, many observations in the literature have suggested that the uni­
dimensionality requirement may have negative effects on the interpretability and 
usefulness ofthe resulting measure. One problem is that this requirement causes 
measures to focus on narrow aspects of phenomena. For example, Humphreys 
(1962) observed that the principle of unidimensionality caused the construct of 
intelligence to splinter into a large set of measures of narrowly defined cogni­
tive abilities, causing the broad construct of intelligence to fall out of focus for 
a long time. 

Another indication that unidimensionality need not be a necessary charac­
teristic of psychological instruments is that many instruments that have been 
proven to be highly useful for theoretical, diagnostic, and predictive purposes 
do not fulfill the unidimensionality requirement. For example, intelligence test 
batteries, such as the Wechsler series, are certainly not unidimensional but are 
considered to be extremely useful for purposes of diagnosis and prediction. In 
virtually any field of psychological measurement, there are numerous other 
examples of instruments that consist of different subtests aggregated into a 
composite score. 

The emphasis on unidimensionality is based on the idea that a variable 
should be unitary and express one characteristic only. However, there are situa­
tions in which variables are not seen as unitary. In a multiple regression analy­
sis, for example, the independent variables are typically regarded as unitary, but 
the dependent variable is not. Instead, the main aim of a multiple regression 
analysis is to decompose the dependent variable into different components of 
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variance, with each accounted for by a different independent variable. Thus, in 
multiple regression analysis, the dependent variable is viewed as being com­
plex, whereas the independent variables are viewed as being unitary. That 
researchers view the independent variables as unitary and the dependent vari­
able as complex is an expression of their wish to find explanations of complex 
phenomena in simple terms. But in social and behavioral research, the distinc­
tion between independent and dependent variables is generally arbitrary, and 
often, as in path analysis and structural equation modeling, variables take on 
the roles of being both independent and dependent variables (e.g., Bollen, 1989). 
This indicates that the notion ofthe unitary variable is a simplification. 

Lucke (2005) argued that heterogeneous instruments are necessary, 
because the phenomena under study in psychological research are only rarely 
unidimensional. 

The complexity of psychosocial behavior may require tests to be heteroge­
neous, perhaps irreducibly so, to maintain their reliability, validity and pre­
dictive utility A psychosocial entity such as social support, self-esteem, or 
depression is a contingently clustered set of attributes that covary under 
mutual causation or share underlying common causal mechanisms The 
number of attributes required to describe an entity is a problem of theory and 
discovery and cannot be determined a priori. The attempts to measure any 
single attribute in isolation from the others may distort the measurement 
results If a theory claims that an entity has multiple attributes, then the 
test measuring that entity should measure all the relevant attributes. There­
fore, the test must be heterogeneous. The meaningfulness of a test lies not in 
a methodological prescription of homogeneity but in the test's ability to cap­
ture all relevant attributes ofthe entity it purports to measure, (p. 66) 

These objections to the principle of instrument homogeneity indicate that this 
principle is neither a necessary nor a sufficient principle for achieving instru­
ments that are practically and theoretically useful. Thus, Lucke's (2005) main 
point is that certain psychological phenomena may not be amenable to investi­
gation under the unidimensionality assumption. 

In a similar line of reasoning, within the framework of a discussion of psy­
chological interpretations of factors, Coan (1964) introduced the term referent 
generality to refer to the scope of reference of a constmct, or "the variety of behav­
iors or mental activities to which it relates and the degree to which it relates to 
them" (p. 138). The idea that constmcts differ in degree of referent generality 
was introduced in relation to hierarchical models of intelligence and personality. 
For example, Burt's (1949) hierarchical model distinguishes four levels of factor 
generality: general, group, specific, and error. 

At a theoretical level, distinctions between constructs of low- and high-
referent generality are easy to make. It is not immediately obvious, however, how 
measurement of constructs of different referent generality should be accom­
plished. For example, the issue of how to best measure the high-referent gener­
ality construct, general cognitive ability, has been extensively discussed since 
the days of Binet and Simon (1916) and Spearman (1927). Furthermore, it may 
be noted that development of psychometric tools to support solution of these 
measurement problems has been sparse. Thus, there is a need for measurement 
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concepts and techniques that make it possible to tackle complex measure­
ment issues when the unidimensionality assumption cannot be relied on. In 
this chapter, these issues are approached and the same idea as was proposed 
by Coan (1964) and Lucke (2005) is relied on; namely, hierarchical factor 
models provide a useful frame of reference for issues of dimensionality. 

Historical Perspective 

Before we go into a more detailed discussion about psychometric problems, there 
may be reason to consider some historical aspects ofthe development of thought 
about measurement. With intervals of about 20 years, successive volumes of 
Educational Measurement have been published, with each volume containing 
chapters about different theoretical and practical aspects of measurement. The 
first edition of Educational Measurement was edited by Lindquist (1951). It 
included one chapter on reliability by Thomdike and one chapter on validity by 
Cureton. 

In the reliability chapter, Thomdike centered his discussion of definitions of 
reliability on a classification of different sources of variance in test scores. He 
emphasized that any analysis of reliability needs to be based on a logical analysis, 
which for a given situation clarifies which sources of variance are to be regarded 
as systematic and which are to be regarded as error variance. Thomdike (1951) 
distinguished between six main categories of variance. Four of these categories 
were based on whether the source of variance is lasting or temporary and whether 
the source of variance is general or specific. 

The first category of variance includes lasting and general characteristics 
ofthe individual and represents, among other sources of variance, level of abil­
ity on one or more general traits, which operate in a number of tests. Into this 
category, Thomdike (1951) also classified general test-taking skills and general 
ability to comprehend instmctions. According to Thomdike, the factors in this 
category are sources of systematic variance, although this does not guarantee 
that they are also valid. 

Thomdike (1951) labeled the second category of variance as lasting and spe­
cific characteristics ofthe individual. This category represents level of ability on 
traits required in a particular test. This may concern specific knowledge or skills 
as well as variance associated with the specific form and method of testing. 

Thomdike (1951) described the third category of sources of variance in test 
scores as temporary but general characteristics of the individual. Examples of 
such factors are state of health, amount of sleep the night before the testing, and 
motivation to perform well. Thomdike observed that such factors vary both in 
their consistency over time and in their generality. He also observed that the 
specific purpose for which a test is used determines whether the sources of vari­
ance in this category are systematic variance or error variance. 

The fourth category of sources of variance reflects temporary and specific 
characteristics ofthe individual. Examples of such factors are comprehension of 
a specific test task; levels of previous practice on a specific task; and short-time 
fluctuations of memory, attention, or effort. Thorndike argued that although 
short-time fluctuations must be regarded as sources of error variance, some 
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factors that affect a test as a whole might, for certain purposes, be regarded as 
systematic factors. 

Thomdike's classification of different sources of variance in test scores is 
based on the view that test scores reflect influence from attributes of different 
degrees of referent generality and temporal stability, and this is a powerful 
framework for discussing logical aspects of reliability. However, after Thorndike 
these distinctions have rarely been made. 

In the chapter on validity, Cureton (1951) also discussed issues of dimen­
sionality and referent generality at some length. He, too, observed that broad 
attributes may be of importance in several tests and that these attributes may 
combine in different ways in different test items. 

Suppose an arithmetic reasoning test draws upon three broad traits, say: a 
verbal trait, a number trait and a reasoning trait. The items ofthe test may 
be homogeneous in the sense that every item ofthe test measures whatever 
is measured by the entire test. This might be termed "three-factor" homo­
geneity. One-factor homogeneous tests are much harder to construct, (p. 648) 

Thus, any test typically is factorially complex, but as long as the items are fac-
torially complex in the same way, the test will be one-dimensional and will thus 
fulfill the main criterion of homogeneity. 

Cureton (1951) proposed, however, an approach to deal with the factorial 
complexity of tests when he said, 

We may expect to find broad cognitive traits, interest traits, attitude traits, 
personality traits, achievement traits and various others. Having found them, 
we may assign trait scores to individuals and compute the intercorrelations 
among the trait scores. We can then factor-analyze the intercorrelations 
among the trait scores. If clearly defined factors are found, we may term them 
supertraits. If there is a general factor common to a number of broad cognitive 
factors, we may choose to call the corresponding supertrait "intelligence." 
There is evidence that such a supertrait "exists" in the sense defined, (p. 648) 

Cureton (1951), thus, suggested a procedure that basically amounts to conduct­
ing a second-order factor analysis to understand the factorial composition of 
tests in terms of broad and narrow factors. He emphasized, however, tha t such 
an approach would not yield any interpretable results unless the measures 
analyzed were homogeneous. 

The term "trait," as used here, is a measurement concept, being defined by 
the operations which show that a set of item performances or test perfor­
mances are to some degree homogeneous. If we want to leam about human 
traits in any scientific fashion, the only way we can do so is to construct 
homogeneous tests and use them in extensive factorial researches, (p. 649) 

This recommendation has been followed in the sense tha t factor analysis of 
homogeneous instruments has been established as a main procedure in research 
on individual differences. But the recommendation to use higher order factor 
analysis has not been followed to any large extent, and it does not seem tha t 
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Cureton's advice has had much of an impact on the procedures used in the field 
of measurement. 

In summary, both Thorndike (1951) and Cureton (1951) saw tests as mea­
suring multiple abilities of different degrees of generality and both framed the 
study of reliability and validity in terms of determining which systematic fac­
tors are involved in test performance. 

Bas ic P s y c h o m e t r i c C o n c e p t s 

There is reason to start the discussion by taking a somewhat closer look at how 
the dimensionality issue is dealt with in psychometric theory and how this 
relates to the two fundamental concepts in measurement theory, namely, reli­
ability and validity. This discussion takes a starting point in the formulation of 
measurement theory by Bollen (1989), which may be described as linking struc­
tural equation modeling and classical test theory. This formulation makes 
explicit important ideas about the fundamental measurement concepts, and 
Bollen's (1989) text has had a strong influence on how issues of measurement 
have been handled within many fields of application. Finally, Bollen's (1989) 
formulation extends the very flexible congeneric measurement model proposed 
by Joreskog (1971) into a more versatile multidimensional model. 

Reliability 

Bollen (1989) defined reliability as the consistency of measurement, or as free­
dom from random error. More formally, Bollen (1989) discussed the concept of 
reliability within the framework of a multidimensional latent variable model, 
as follows. Assume that we represent an m x 1 vector of observed scores as x. 
The x scores depend on a q x 1 vector, £, of latent variables; an m x 1 vector, s, 
of specific variance components; and an m x 1 vector, e, of errors of measure­
ment, such that 

x = At, + s + e. (1) 

Here A is an m x q matrix of coefficients (or factor loadings), and we assume 
E(e) = 0 and E(s) = 0. We also assume 2;, s and e to be uncorrelated. 

The model in Equation 1 accounts for the observed variance in x in terms of 
systematic variance due to 2;, specific variance due to s, and random variation 
due to e. The specific variance component, s, is not easy to distinguish from the 
systematic 2; component. However, the s component may be understood as a sys­
tematic component that only influences a particular observed variable. In the 
reliability literature, the s component is also referred to as the unique compo­
nent of x. Within the factor analytic framework, these unique components cannot 
easily be dealt with, and unless the model is set up in such a way that the s com­
ponent can be explicitly identified, they will merge with e and be considered as 
sources of unreliability rather than as systematic sources of variance. 

Traditionally, the reliability of an observed variable Xi is defined as the 
ratio of systematic variance (i.e., all components of variance except e^ in #,• to 
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the total variance of x*. However, because ofthe problem of identifying the S; 
contribution, Bollen (1989) proposed an alternative definition ofthe reliability 
ofxi, as "the magnitude ofthe direct relations that all [latent] variables have on 
x" (p. 221). This definition assumes that the contribution from the specific 
component S; on Xi is zero. Should there be s, variance, it must be explicitly rep­
resented in the model as 2; variance, because otherwise reliability will be sys­
tematically underestimated. 

There are simple methods that may be applied when the amount of influence 
from an S; component needs to be estimated. One approach is to split a mea­
sure, Xi, into subcomponents (e.g., half tests) and enter these subcomponents as 
observed variables connected to a latent variable, which represents all the 
nonrandom sources of variance in x^ However, even though such a split-half 
technique can often and easily be implemented, it does make the model more 
complicated. Furthermore, in such a model there would be a set of latent vari­
ables, each of which would correspond to the nonrandom part of x^ This may or 
may not be desirable, depending on the purpose ofthe model. 

The definition of reliability discussed here pertains to a single indicator x;. 
However, as shown by Bollen (1989), the reliability of an unweighted sum of indi­
cators can easily be computed from the estimated factor loadings for all x, and 
this reliability estimate agrees with the basic definition ofthe reliability of a 
single indicator as the amount of variance accounted for by the latent variables. 

Validity 

A general definition of validity is the extent to which an operationalized vari­
able effectively measures the variable it is supposed to measure. This issue 
cannot be approached unless there is a theoretically based definition of the 
intent of measurement. Bollen (1989) outlined four steps to take when setting 
up a measurement model. The first step involves formulation of a theoretical 
definition, which explains in as simple and precise terms as possible the mean­
ing of a concept. According to Bollen, one important function ofthe theoretical 
definition is that it 

clarifies the dimensions of a concept. Dimensions are distinct aspects of a 
concept. They are components that cannot easily be subdivided into addi­
tional components. Since concepts have numerous possible dimensions, a 
definition is critical to set the limit on the dimensions a researcher selects. 
We need one latent variable per dimension, (p. 180) 

Thus, the second step is to identify the different aspects, or dimensions, ofthe 
concept and the latent variables that may represent them. In the third step, 
measures are created as indicators of the latent variables, and in the fourth 
and final step, a measurement model is constructed in which the latent vari­
ables are connected to one or more measures. The measurement model takes 
the form specified in Equation 1. 

Bollen (1989) discussed the several different proposed forms of validity, 
such as content validity, criterion validity, and construct validity. He argued 
that there are problems associated with all these forms of validity and proposed 
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an alternative definition based on structural equation modeling: "The validity 
of a measure Xi of ^ is the magnitude of the direct structural relation between 
î and x" (p. 197). This simple and straightforward definition of validity resolves 

the problem that Bollen (1989) identified with the other forms of validity, 
although these details are beyond the scope ofthe following discussion. 

Discussion 

Bollen's (1989) definitions ofthe basic measurement concepts summarize much 
of the current psychometric thinking, and through taking advantage of the 
multidimensional structural equation model, the concepts of reliability and 
validity become more general and flexible than in the traditional formulations. 
Nevertheless, it seems that some basic problems remain to be sorted out that 
primarily involve the conceptualization of validity. 

One basic problem with the approach to validity argued for by Bollen 
(1989) is that each concept is divided into sets of dimensions, each of which is 
represented with a single latent variable. This implies that a high-referent gen­
erality construct is represented as several low-referent generality constmcts 
(Coan, 1964), whereas there is no latent variable that represents the common 
core of the construct. Suppose that several latent variables assumed to repre­
sent a single construct are entered as independent variables in a structural 
equation model. In such a model the estimated stmctural coefficients for the 
correlated latent variables would reflect the contribution of each dimension, 
whereas any effects ofthe variance that overlaps the latent variables would not 
be seen, because they would be concealed among the unanalyzed covariances 
among the latent variables. Thus, because there is no latent variable in the 
model that represents the common content of the construct over dimensions, 
the construct would become fragmented into several narrow constmcts. One 
approach that could be used to solve this problem would be to introduce a second-
order factor to represent the common variance of the different dimensions. 
However, according to Bollen (1989), there must be a direct link between the 
latent variable and the observed variable, which implies that the validity defi­
nition only covers relations between first-order factors and observed variables. 

Another problem, which pertains both to reliability and to validity, is that 
no explicit allowance is made for the specific components of the measures. As 
has already been pointed out, this can easily be solved through extending the 
model with latent variables to capture the specific components. However, this 
would result in a set of latent variables with even lower referent generality, 
each latent variable corresponding to an observed variable. It certainly would be 
possible to analyze the stmcture among the latent variables through use of a 
higher order modeling approach, in which additional layers of latent variables 
are introduced in order to account for the covariances among lower order fac­
tors. Again, however, the restriction ofthe validity definition, which only allows 
for direct relations between first-order factors and the observed variable, pre­
vents this. However, in such a model validity would get lost in the attempts to 
adequately represent reliability. Thus, even though Bollen's (1989) formulation 
ofthe basic ideas of measurement seems sound, there are problems that need to 
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be attended to and the fundamental issue is how to represent broad aspects of 
constructs along with narrow aspects of constmcts. 

Hierarchical Modeling Approaches 

We have already concluded that one possible approach that could be used 
to deal with the problem of representing aspects of constructs with different 
degrees of referent generality is hierarchical factor-analytic modeling. As has 
also been shown, this is not a new or an original idea, and several researchers 
have proposed hierarchical modeling as a method to come to grips with the 
problem of dealing with heterogeneous tests. Still, the impact on practical 
applications has been limited. 

In a hierarchical factor model, some factors are broader than other factors. 
There are, however, different ways in which such models may be set up. One 
approach is through higher order factor analysis, which is closely related to 
Thurstone's multiple factor analysis. Thurstone (e.g., 1947) argued that factor 
models should have a "simple stmcture" in the sense that each factor is associ­
ated with a subset ofthe observed variables and that each observed variable is 
influenced by only one or a few factors. This allows an invariant determination 
and interpretation of factors, because when the simple structure criteria are 
satisfied, it becomes clear which observed variables a particular factor is related 
and to which variables it is not related. The best approximation to simple struc­
ture typically is obtained when the factors are allowed to be correlated in an 
oblique solution. 

A higher order (HO) model may then be constructed through factoring the 
correlations among the factors, using the same factor analytic principles as 
when observed variables are analyzed. We may hypothesize, for example, that 
a single second-order factor accounts for the intercorrelations among the fac­
tors. If a single factor cannot account for the correlations among the factors, one 
or more additional second-order factors may be introduced. Should we end up 
with several second-order factors, these may be correlated. To account for these 
correlations, a third-order factor may be introduced and so on. Thus, with this 
approach, a hierarchy of factors is built up, starting from below with a large 
number of narrow first-order factors and ending at the top ofthe hierarchy with 
one, or a few, broad higher order factors. 

An example of a simple HO model, which involves only six observed vari­
ables, three first-order (I, V, and S) and one second-order factor (G), is shown 
in Figure 5.1. In this model, the loading of I on G is assumed to be unity, so 
there is no residual variance in the first-order I factor. For the other two first-
order factors, there are residuals, which are labeled V and S', respectively. In 
an HO model, there are no direct relations between the observed variables 
and the higher order factors. It may also be noted that both the first-order fac­
tors and the second-order factor in this example satisfy the simple-structure 
criterion. 

There has been, however, a considerable reluctance among researchers to 
fit HO models. One reason for this is that such models are technically more 
complicated to deal with than are factor models, which include only first-order 
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Figure 5.1. A higher order model with three primary and one second-order abilities. 

factors. Another and perhaps more important reason is that higher order fac­
tors are difficult to interpret. Gorsuch (1983) pointed out that 

the understanding of primary factors is based upon interpretations of their 
relationships with the original variables. The interpretations are post hoc 
and subject to considerable error. . . . Interpretations of the second-order 
factors would need to be based upon the interpretations ofthe first-order fac­
tors. . . . Whereas it is hoped that the investigator knows the variables well 
enough to interpret them, the accuracy of interpretation will decrease with 
the first-order factors, will be less with the second-order factors and still less 
with the third-order factors, (p. 245) 

Thus, the great perceived distance between the higher order factors and the 
manifest variables has been seen as a reason for avoiding higher order factors. 
It is possible, however, to transform a higher order model into a model in which 
all factors relate to the manifest variables, using the so-called Schmid and 
Leiman (1957) transformation (e.g., Yung, McLeod, & Thissen, 1999). After the 
transformation has been applied, the manifest variables relate to more than one 
factor, and if there is a general factor, it relates to all the manifest variables. Thus, 
such a model does not conform to the principles of simple structure, because each 
manifest variable is influenced by more than one latent variable. 
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It may be noted that the perception that higher order factors belong to a 
different category of factors, which is more distant from reality than first-order 
factors has been challenged by Humphreys (1962) and Coan (1964). They argue 
that the difference is a matter of breadth of influence, rather than due to the 
higher order factors being superordinate to the lower order factors. Thus, a 
higher order factor simply exerts influence on a greater number of manifest 
variables than does a lower order factor. 

The transformed model with orthogonal factors is often referred to as the 
hierarchical factor model (Yung et al., 1999). However, terminology is not quite 
consistent. In keeping with the terminology established within the psychological 
literature (e.g., Coan, 1964), Gustafsson (1988) and Gustafsson and Balke (1993) 
used the label hierarchical factor model to refer to any type of model that includes 
both broad and narrow factors, whereas they referred to the orthogonal type of 
model as the nested factor (NF) model. 

In an NF model, orthogonal factors are allowed to span a broader or a more 
narrow range of observed variables. A general factor typically is fitted first, 
after which successively more narrow factors are fitted to the residual correla­
tions. In Figure 5.2, an NF model is shown for the same six observed variables 
as used to illustrate the HO model. 

In this model, the ability factors are all directly related to the tests. Because 
the G factor accounts for variance in the tests to which V and S are related, the 

F i g u r e 5.2. A nested-factor model with one broad and two narrow factors. 
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narrow factors are residual factors in this model, too. In this model, there is no T 
(or I) factor because the G factor leaves no systematic variance unaccounted for 
in the two variables that measure the I factor. 

The HO and NF models tend to carry the same substantive interpretations, 
and the numerical estimates of relations between observed variables and factors 
in an NF model and a Schmid and Leiman (1957) transformed HO model are typ­
ically highly similar. However, the HO model is more constrained than is the NF 
model (see Mulaik & Quartetti, 1997; Yung et al., 1999). It may also be noted that 
in the NF model in Figure 2, there are only three latent variables, whereas in the 
HO model in Figure 1, there are four latent variables. This is, of course, because 
ofthe equivalence between G and I, which in the top-down NF analysis causes 
the I factor to vanish, whereas it remains in the bottom-up HO analysis. 

Implications ofthe Hierarchical Factor Model for Measurement 

It has already been demonstrated that hierarchical factor models are useful for 
addressing measurement issues that involve heterogeneous tests. For example, 
Lucke (2005) proposed an extension of reliability theory to heterogeneous tests 
under the label congeneric test theory. Lucke's generalization of reliability and 
internal consistency to heterogeneous tests is based on a higher order factor-
analytic modeling approach, and it shows, among other things, that reliability 
of a heterogeneous test is a function ofthe sum ofthe reliabilities of homogenous 
subtests plus the reliability ofthe correlations across subtests. McDonald (1999) 
also has made important contributions to measurement theory through taking a 
starting point in hierarchical modeling approaches. Still, however, there seems 
to be a need for further work along these lines. 

Implications for Conceptions of Measurement 

The hierarchical factor model in general, and the NF model in particular, have 
a number of interesting implications for conceptions of measurement. It may 
thus be noted that the NF model in a very concrete manner illustrates 
Humphrey's (1962) point that the broad factors are not at a greater distance 
from the observed variables than are the narrow factors. This impression is cre­
ated by the way in which the HO model is presented, but from the NF model, it 
is immediately apparent that the broad factors simply exert an influence on a 
larger set of observed variables. Thus, breadth of influence on observed vari­
ables, rather than distance from observed variables, is what distinguishes broad 
and narrow factors. 

In the discussion of Bollen's (1989) definition of validity, it was observed 
that the formulation did not easily accommodate the need to include latent vari­
ables of different degrees of generality because of the requirement that there 
may only be direct relations between latent and observed variables. However, in 
the NF model, all factors are basically first-order factors, and they all have 
direct relations with the observed variables. Thus, this type of model may be 
used to represent both broad and narrow latent variables in a multidimensional 
measurement model. 
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One of the consequences of adopting such a measurement model is that 
the simple structure idea, that each observed variable should only reflect one 
latent variable, must be replaced with the notion that observed variables are 
complex and typically measure several constructs of different degrees of ref­
erent generality. This is illustrated by Figure 2, in which it is seen that every 
observed variable is influenced by the general factor, along with a narrow fac­
tor. In addition, each variable has a specific factor, which is here confounded 
with the random error component. With a more elaborate hierarchical model 
it would, of course, be possible to identify more components of variance in the 
independent variables. 

It must be emphasized, though, that adoption of a hierarchical measure­
ment model is closely associated with adopting a particular theoretical model 
of the phenomenon under investigation. This is seen through the example of 
research on the stmcture of intelligence (Gustafsson, 2002). Thus, the question 
of whether general intelligence exists has been one of the most controversial 
questions in the history of psychological research. The hierarchical model explic­
itly introduces the general factor, so anyone who does not believe in the mean­
ingfulness of such factor would be hesitant to adopt a hierarchical model for 
measuring cognitive abilities. However, all measurement models embody theo­
retical conceptions, so this is not a unique feature of hierarchical models. 

On the basis ofthe implication of hierarchical measurement models, in which 
observed variables typically reflect a mixture of broad and narrow components of 
variance, Gustafsson (2002) formulated three propositions on measurement: 

1. To measure constructs with high-referent generality, it is necessary to 
use heterogeneous measurement devices. 

2. A homogenous test always measures several dimensions. 
3. To measure constructs with low-referent generality, it is also neces­

sary to measure constructs with high generality. 

According to the first proposition, the best way and sometimes the only way to 
capture a constmct with high-referent generality (e.g., general intelligence) is to 
use a heterogeneous test. Suppose that we want to measure a factor that is pres­
ent in all the components in a battery. Such a general factor will, to some extent, 
be present in every test, even though the amount of variance accounted for in each 
component may be relatively small. However, the amount of variance accounted 
for by the different factors in the sum ofthe component scores not only depends on 
the mean factor loading, but also on the nmnber of components in which the fac­
tor is involved (see Gustafsson, 2002). This is because the amount of variance 
associated with a latent variable is proportional to the square of the number of 
components to which it is related. For example, if there are 100 components in a 
test and a general factor is related to all of these, it would be weighted by a factor 
of 10,000. In contrast, a narrow latent variable that is involved in only five compo­
nents would be weighted by a factor of 25. From this simple observation follows a 
principle of aggregation, which states that as the number of components in which 
a latent variable is involved increases, the variable will tend to dominate the vari­
ance in the sum of scores (see Humphreys, 1962). 
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Gustafsson (2002) used results from a reanalysis of data on a test battery 
initially analyzed by Holzinger and Swineford (1939) to demonstrate that this 
principle of aggregation caused a striking dominance ofthe G factor in the sum 
of scores and quite limited contributions from the other factors. Gustafsson 
(2002) also observed that these results explain the success of Binet's approach 
to measuring general ability with heterogeneous tests, as compared with the 
relatively modest amount of success met by Spearman's attempts to measure 
general intelligence with a single, highly G-loaded test. 

The proposition that a homogeneous test measures several abilities fol­
lows directly from the fact that in the NF model, each observed variable is an 
indicator of several latent variables of different degrees of generality. As has 
already been pointed out, the principle of simple structure does not apply to NF 
models and there will typically be several sources of variance in each observed 
variable, unless the observed variable is heterogeneous and the principle of 
aggregation has caused the general factor to dominate the variance ofthe test. 
For example, a homogeneous test of spatial-visualization ability will measure 
a general factor of cognitive ability, a general visualization factor, and a narrow 
spatial-visualization factor. 

The third proposition (i.e., that measurement of low generality constructs 
also requires measurement of high generality constructs) is closely related to 
the second one. It states that if our intention is to measure one or more narrow 
factors, it is necessary to partial out the influence of the more general factors 
that exert influence on the observed variable. This may, for example, be done 
through computing factor scores (Gustafsson & Snow, 1997), but this cannot be 
done unless information is available that allows estimation ofthe more general 
dimensions. 

Measures of Reliability and Validity 

One ofthe great advantages ofthe NF type of hierarchical model for measure­
ment applications stems from the fact that it can easily be used to decompose 
the observed variance of a test in terms of contributions from the orthogonal 
latent factors. An NF model is fitted to the components of a test (e.g., items or 
subscales), and from the estimated factor loadings and factor variances, the 
proportions of variance in the sum of scores due to the different latent variables 
can be computed, as follows. Assuming the s vector in Equation 1 to be 0, this 
model generates, under the usual assumptions of independence of residuals and 
factors, the following covariance structure: 

^ A ^ A ' + O. (2) 

Y is the covariance matrix ofthe latent variables and 0 is the covariance matrix 
of the residuals in manifest variables. Assuming that we restrict attention to 
nested-factor models, 4* is diagonal and 0 is also assumed to be orthogonal. 

Here, our primary interest is on properties of functions of the observed 
variables. Let us assume that we constmct a simple unit-weighted sum (T, for 
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total) ofthe individuals' scores on the m variables. Because the variance of a 
sum of components is equal to the sum of all the elements of the covariance 
matrix for the components, it follows that 

k ( m \ 2 m 

V-ar(T) = X 1 ^ Vi+lBu (3) 
; = I V J = I / j=l 

This formula, thus, achieves a decomposition of the total observed variance of 
Tinto different components due to the different latent variables and to the errors 
of measurement, which we can easily determine in terms of proportions of the 
total variance. 

McDonald (1999) describes the coefficient Q, which expresses the propor­
tion of variance due to the general factor among a set of components and that 
can easily be computed from the estimated factor loadings, as shown above. For 
a unidimensional test, Q. is both a reliability coefficient and a validity coeffi­
cient (McDonald, 1999). For a multidimensional test, Q. expresses, according to 
McDonald (1999), the proportion of variance that the general factor accounts 
for in the sum of scores. Following Bollen (1989), this is a validity measure, even 
though the coefficient refers to the unweighted sum of scores rather than to the 
validity of a single component. We may also generalize McDonald's approach 
and compute a separate Q for each ofthe other latent variables in an NF model. 
This measure expresses the proportion oftotal score variance accounted for by 
the latent variable. 

We may also define a composite reliability coefficient, Py, as the proportion 
ofthe total variance that is accounted for by all the latent variables. The com­
posite reliability coefficient agrees with Bollen's (1989) definition of reliability, 
except that it refers to an unweighted sum of component scores rather than to 
the reliability of a single component. 

It must be emphasized that, here, we are only focusing on characteristics 
ofthe variance of a unit-weighted sum of scores over the m components. Thus, 
we are still staying within the confines of classical test theory, and the approach 
taken is purely descriptive. Recently, interesting solutions to the problems of 
statistical inference concerning the reliability of scales within a latent variable 
framework have been developed and applied by several researchers (e.g., Hancock 
& Mueller, 2001; Raykov, 1997; 1998; Raykov & Shrout, 2002). It would, however, 
carry too far to discuss these here, and in the empirical demonstration to which 
we next turn, the simple descriptive technique is used. 

Measurement Propert ies of the Swedish 
Scholastic Apti tude Test 

The discussion so far has been quite general and abstract, and there is need to 
bring it down to a more concrete and applied level. This is accomplished through 
focusing on the Swedish Scholastic Aptitude Test (SweSAT) as an example. 
The SweSAT was developed as an additional instrument for gaining access to 
higher education in Sweden; when it was introduced in 1977, one ofthe aims 
was to rectify the uneven recruitment from different social groups. Originally, 
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the test was taken only by small groups of applicants who did not have grades 
from upper secondary education. However, starting in the spring of 1991, every­
one could take the test and make use of the results when applying for under­
graduate studies. Thereby, the number of test takers increased from about 
10,000 a year during the 1980s to more than 100,000 a year. This has made the 
SweSAT an important instrument for gaining access to those parts ofthe uni­
versity systems in which there are more applicants than study places. 

The SweSAT is designed to assess the general ability to successfully pass 
higher education courses. Reading skills, vocabulary, and skills of reasoning, 
primarily with quantitative information, are focused on in the test. However, 
the test lacks a theoretical basis for its construction, and little is known about 
what the total score computed from the subtests actually measures. However, 
during the last couple of decades, progress has been made in research on the hier­
archical structure of cognitive abilities, which may be drawn on to achieve a 
better understanding ofthe measurement properties ofthe SweSAT. 

Hierarchical models have proven extremely useful in research on cognitive 
abilities because they resolve the conflict between theorists who emphasize one 
general abihty (e.g., Humphreys, 1985; Jensen, 1998; Spearman, 1927) and theo­
rists who emphasize several specialized abilities (e.g., Guilford, 1967; Thurstone, 
1938) by allowing for both categories of abihties in the model. The Carroll (1993) 
three-stratum model is an elaborate hierarchical model. The model is based upon 
reanalyses of a large number of correlation matrices collected throughout the 20th 
century. In the model, there are factors of three degrees of generality. At the first 
stratum, there are at least 60 narrow factors, many of which correspond to factors 
previously identified by Guilford, Thurstone, and other researchers working in 
the tradition of multiple factor analysis. 

At the second stratum, some 10 broad factors are identified, most of which 
correspond to factors identified by Cattell (e.g., 1963), Horn and Cattell (1966), 
and other researchers using second-order factor analysis. Among the second-
stratum factors, two are especially important. One is Fluid Intelligence (Gf), 
which is related to first-stratum factors representing induction, reasoning, 
problem solving, and visual perception. The other factor is Crystallized 
Intelligence (Gc), which is involved in language and reading tasks, as well as 
tests of declarative knowledge in wide areas. A third prominent factor is Broad 
Visual Perception (Gv), which involves manipulation of figural information, 
particularly when perception or mental manipulation is complex and difficult. 
At the top ofthe three-stratum model, Carroll (1993) identified the general fac­
tor (G). Among the second-order factors, Gf was found to have the highest cor­
relation with G, and Gc was found to have the next highest correlation with G. 

An alternative hierarchical model has been investigated in a series of empir­
ical studies by Gustafsson and Undheim (Gustafsson, 1984,1988; Gustafsson & 
Balke, 1993; Undheim, 1981; Undheim & Gustafsson, 1987). This model also 
identifies ability factors of three degrees of generahty. However, the third-order 
G factor and the second-order Gf factor are regarded as one and the same factor 
in the model because several studies have shown that there is a perfect correla­
tion between them (e.g., Gustafsson, 1984). 

In order to study the dimensionality ofthe SweSAT, Gustafsson, Wedman, 
and Westerlund (1992) fitted CFA models to the six subtests that were included 
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in the SweSAT up to 1991. Unlike the presently used SweSAT, these earlier ver­
sions included subtests of Study Techniques and General Information. The other 
four subtests were Data Sufficiency; Diagrams, Tables, and Maps; Swedish 
Reading Comprehension; and Vocabulary. Two factors were identified, one of 
which was a general factor on which all subtests had loadings and the other a 
verbal knowledge factor on which four subtests had loadings. The two subtests 
requiring logical reasoning and complex problem solving (Data Sufficiency and 
Diagrams, Tables, and Maps) had the highest loadings on the general factor, 
whereas they had no loadings on the verbal knowledge factor. The two factors 
were hypothesized to closely correspond to the G and Gc factors. 

However, the Gustafsson et al. (1992) study was restricted by the limited 
number of subtests included in the SweSAT, and the authors argued that addi­
tional information would be needed to determine the measurement properties 
of the test. This is illustrated in an interesting study by Roberts et al. (2000), 
who investigated the construct validity of the Armed Services Vocational 
Aptitude Battery (ASVAB). This test serves as a screening test for military 
enlistees and as a guidance/counseling device in high schools in the United 
States. In two studies, Roberts et al. examined the factorial composition ofthe 
ASVAB by combining it with other tests of known factorial content. Their 
results showed that ASVAB primarily measured the Gc factor and not general 
intelligence, as it had been claimed. SweSAT is primarily composed of verbal 
tasks (i.e., vocabulary and reading comprehension in Swedish as well as English), 
and the two problem-solving subtests (i.e., Diagrams, Tables, and Maps; Data 
Sufficiency) have verbally formulated items. This makes it reasonable to believe 
that the Gc factor accounts for much ofthe individual differences in performance 
on the SweSAT, too. 

In addition to the broad G and Gc factors, there is reason to believe that 
further, more narrow factors are involved in test performance in, for example, 
the domain of quantitative skills. Thus, these previous studies indicate that 
the SweSAT is multidimensional. However, it certainly would be desirable to 
achieve a better understanding of which sources of variance are reflected in the 
total SweSAT score and of how the measurement characteristics of the test 
determine the contributions from different factors. Following are results from 
three different studies that aim to answer these questions. 

Study 1: Sources of Variance in the Diagrams, 
Tables, and Maps Test 

The first issue to be addressed is the identification of the sources of variance 
through item-level analyses of a single subtest that has been constructed with 
the aim of being relatively homogeneous. Results are summarized from studies 
presented by Aberg-Bengtsson (1999), and some further analyses are made of 
the obtained results. 

The Diagram, Tables, and Maps (DTM) test is a complex problem-solving 
test requiring responses to questions about information presented in tables, 
graphs, diagrams, and maps. Some items involve manipulation of numerical 
information, and Aberg-Bengtsson (1999) asked if these items require a quan-
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titative ability over and above the ability measured by all the items. One reason 
for asking this question was the substantial male advantage in performance on 
DTM, and one hypothesis was that items requiring manipulation of numerical 
information were a main source ofthe gender difference in performance. 

Aberg-Bengtsson (1999) conducted her analyses on a group of 19-year-old 
test takers (N = 14,431) who had taken the SweSAT in the spring of 1991. She 
fitted a series of CFA models to the item-level covariance matrix using maxi­
mum likelihood estimation techniques. Although the dichotomous item data 
violate the assumption of linearity of the regressions of items on latent vari­
ables, as well as the assumption of multivariate normality, this approach has 
the advantage that it models the simple summation of the item scores into a 
total score. 

The modeling was done in several steps in which factors were successively 
added. In the first step, a general DTM factor (GenDTM)—^presumed to mea­
sure a general ability to handle diagrams, tables, and maps—was first related 
to all items in the test. In the DTM subtest, the items are organized in a pair-
wise manner with each pair related to a particular theme on its own double 
page. Therefore, the residuals of items thus juxtaposed were stipulated to 
covary. Next, a nested "end oftest factor" (End) was added to the model, which 
was significantly related to the last five items ofthe test, the loadings being suc­
cessively higher for items closer to the end ofthe test. Third, a nested "quantita­
tive" factor (Quant) was introduced. Items classified as quantitative involved 
more or less complicated arithmetic and calculations in addition to the reading of 
diagrams, tables, and maps. There were 13 items that had such characteristics. 
The standardized factor loadings are presented in Table 5.1. As has already 
been mentioned, 13 items had a significant loading on the Quant factor. For some 
items, the loadings were quite small, but eight had a loading larger than .1. For 
several items, the loading on the Quant factor was almost as large as the load­
ing on the GenDTM factor. 

In spite ofthe fact that the Quant factor was present in quite a few ofthe 
items, this factor only accounted for 6% ofthe variance in the unweighted sum 
of DTM item scores. Thus, the Q. coefficient for the Quant factor was .06, which 
may be compared with the Q coefficient ofthe GenDTM factor, which was .57. 
Thus, the GenDTM factor accounted for almost 10 times as much variance in the 
sum of scores as did the Quant factor. One reason for this is that the GenDTM 
factor is present in each item and, according to the principle of aggregation, the 
amount of influence of a factor is proportional to the square of the number of 
items in which it is involved. Another reason for the higher Q. ofthe GenDTM 
factor is that the mean ofthe standardized item loadings was twice as high for 
GenDTM as for Quant (.28 and .14, respectively). 

The model also included an End factor, defined by the last five items. For 
this factor, the item loadings increased as a function ofthe position ofthe item 
in the test. There is a time limit on the test, so this pattern of loadings may be 
an expression of the test being somewhat speeded. However, the End factor 
only accounted for 2% of the observed variance in the sum of scores. 

In conclusion, the composite reliability ofthe DTM test was .65, and the main 
component contributing to the reliability of the test was the GenDTM factor. 
Thus, in spite ofthe fact that there were three identifiable sources of variance 
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Table 5.1. Nested-Factor Model for the DTM Test With One General and 
Two Specific Factors 

Item 

DTM ItemOl 
DTM Item02 
DTM ItemOS 
DTM Item04 
DTM ItemOS 
DTM Item06 
DTM Item07 
DTM ItemOS 
DTM Item09 
DTM ItemlO 
DTM Iteml 1 
DTM Iteml2 
DTM ItemlS 
DTM Iteml4 
DTM ItemlS 
DTM Iteml6 
DTM Iteml? 
DTM ItemlS 
DTM Iteml9 
DTM ItemflO 
Proportion of variance 

in DTM sum 

GenDTM 

0.04 
0.30 
0.17 
0.26 
0.32 
0.25 
0.16 
0.41 
0.20 
0.30 
0.19 
0.31 
0.23 
0.27 
0.34 
0.32 
0.34 
0.37 
0.45 
0.31 
0.57 

Quant 

0.25 
0.04 
0.15 

0.13 

0.14 

0.09 
0.09 
0.14 
0.24 
0.23 
0.16 
0.05 

0.05 

0.06 

End 

0.04 
0.10 
0.16 
0.27 
0.39 
0.02 

Residual 

1.00 
0.92 
0.98 
0.95 
0.95 
0.96 
0.99 
0.91 
0.97 
0.95 
0.98 
0.95 
0.96 
0.93 
0.91 
0.93 
0.93 
0.92 
0.85 
0.87 
0.35 

Note. DTM = Diagrams, Tables, and Maps; GenDTM = general DTM factor; Quant = quantitative 
factor; END = end oftest factor. 

in the DTM test, the test seemed fairly homogeneous. It should be observed, 
however, that the relatively small amount of variance accounted for by the 
Quant factor does not make it theoretically or practically unimportant. As was 
shown by Aberg-Bengtsson (1999), the Quant factor accounts for a considerable 
part ofthe gender difference in performance on the DTM test. Thus, the main 
conclusion of this analysis is that in a "microscopic" analysis (i.e., at the item 
level of a single test), it is possible to identify several narrow factors. However, 
in the sum of scores, these narrow factors contribute only marginal amounts of 
variance. 

Study 2: Sources of Variance in the SweSAT Score 

The next set of issues to be approached concerns which particular sources of 
variance may be identified in the total SweSAT score. Here, results from a 
study by Aberg-Bengtsson (2005) are summarized. The main aim of those 
analyses was to try to separate the Quant factor from a more general analyti­
cal factor, and through invoking the other subtests as well, more information 
was made available for the modeling. In the modeling, the DTM test was intro-
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duced at the item level, while the summed subtest scores were analyzed for the 
other five subtests. The model to be considered here was fitted to the same data 
as in Study 1 reported previously, and the same modeling techniques were used. 

In the hypothesized model, a general factor (Gen) related to all manifest 
variables was introduced. Thus, with respect to the DTM subtest, the latent 
variable GenDTM was now exchanged for a broader general dimension. The two 
nested factors identified in the DTM-model, Quant and End (see Study 1), were 
also included in the model. The Data Sufficiency subtest (DS) was hypothesized 
to load on the Quant factor. Finally, the knowledge factor (Knowl), previously 
identified by Gustafsson et al. (1992), was brought into the model and related to 
the General Information (GI), Vocabulary (WORD), Reading Comprehension 
(READ), and Study Technique (STECH) tests. Even though this factor was ten­
tatively labeled knowledge, it must be assumed that it is multidimensional and 
may, for example, include different verbal abilities as well as strategic perfor­
mance. The hypothesized model is presented in Figure 5.3. 

DTM 01 

Figure 5.3. A nested-factor model for the SweSAT. 
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Tab le 5.2. Amount of Variance Due to the Different Factors in the Subtests 

Factor 

Gen 
Quant 
End 
Knowl 
Residual 

DTM 

0.57 
0.06 
0.02 

0.35 

DS 

0.48 
0.09 

0.44 

WORD 

0.21 

0.41 
0.38 

READ 

0.35 

0.17 
0.49 

STECH 

0.40 

0.13 
0.46 

GI 

0.30 

0.19 
0.50 

SweSAT 

0.66 
0.01 
0.00 
0.19 
0.13 

Note. DTM = Diagrams, Tables, and Maps; DS = Data Sufficiency; WORD = Vocabulary; 
STECH = Study Technique; GI = General Information; SweSAT = Swedish Scholastic 
Aptitude Test; Gen = general; Quant = quantitative factor; END = end oftest factor; 
Knowl = knowledge. 

Table 5.2 presents the estimated components of variance in each of the 
subtests, along with the computed proportions of variance in the total sum of 
scores that is due to each latent variable. It may first be observed that the Gen 
factor accounted for a larger proportion of variance in the total SweSAT score 
(.66) than in any ofthe subtests (.21-.57). This is, again, a consequence ofthe 
fact that the Gen factor influences each subtest, and the principle of aggrega­
tion causes it to dominate more in the total sum of scores than in any ofthe sub­
test scores. The Knowl factor was the second most important source of variance 
in the total SweSAT score (.19), and this factor was relatively important in 
the four verbal subtests, in which it accounted for between 13% and 41% ofthe 
variance. The Quant factor in this model was estimated to account for 9% ofthe 
variance in the DS subtest and for 6% of the variance in the DTM subtest. 
However, only 1% of the variance in the total SweSAT score was due to the 
Quant factor, which was only because a small proportion ofthe total number of 
items loaded on this factor. 

Thus, the main conclusion from this study is that the total SweSAT score 
is dominated to a larger extent by the general factor than are any ofthe subtest 
scores. This is, again, due to the principle of aggregation, according to which 
the number of components in which a factor is involved determines the amount 
of variance contributed by the factor. 

It may be asked how this general factor should be interpreted. The main 
question investigated in the Aberg-Bengtsson (2005) study was whether it is 
possible to separate the Quant factor from a general factor with the highest 
relation to the complex problem-solving tests. Such a result would lend support 
to the hypothesis that this general factor is close to the Gf factor, which is also 
close to the G factor (Gustafsson, 1984). This interpretation is supported by the 
fact that the two reasoning tests (DS and DTM) are, indeed, the ones most 
highly saturated by the general factor. The interpretation is also supported by 
the observation that the second most important factor was Knowl, with rela­
tions to the four verbal subtests. This factor, thus, seems to come close to Gc. 
However, to test these speculations it is necessary to combine the SweSAT with 
other tests that have known measurement properties. 
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Study 3: Combining the SweSAT With Other Measures 

Carlstedt and Gustafsson (2005) reported a study in which SweSAT results 
were analyzed in combination with results achieved on the Swedish Enlistment 
Battery (SEB), which is used at conscription to military service. The main aim 
was to understand the meaning of the two dominant factors in the SweSAT 
through bringing in other measures with known properties. 

The computer assisted test version of SEB (CAT-SEB) was developed 
to measure the theoretical constructs of G (or Gf), Gc, and Gv (Mardberg & 
Carlstedt, 1998). The battery comprises 10 tests covering broad domains such 
as nonverbal problem solving, vocabulary, spatial tasks, and technical knowl­
edge. Previous analyses ofthe test battery have confirmed the presence ofthe 
three ability factors (Carlstedt, 2001; Mardberg & Carlstedt, 1998; Ullstadius, 
Gustafsson, & Carlstedt, 2002). The general factor influences all tests, but it 
exerts its strongest influence on the nonverbal problem-solving tests, indicat­
ing that the factor is close to Gf. The Gc and the Gv factors have also been found 
to replicate in different samples. 

Six samples (N=2,500-3,000) of 18-year-old males taking both the SweSAT 
and the SEB in 1997-1999 were used (Carlstedt & Gustafsson, 2005). Those 
who took the SweSAT in the autumn ofthe same year as they took the CAT-SEB 
(i.e., at 18 years), or in the following spring (i.e., at 19 years), were included. 

The SEB included two Gf tests: Figure Series and Groups; five Gv tests: 
Dice 1 and Dice 2, Metal Folding Test, Block Rotation, and Technical Comprehen­
sion; and three Gc tests: Synonyms 1, Synonyms 2, and Antonyms. The SweSAT 
was revised in 1996 and the versions used included five subtests: WORD, READ, 
DTM,DS,andERC. 

A previously fitted model for the CAT-SEB (e.g., Carlstedt, 2001; Mardberg 
& Carlstedt, 1998; Ullstadius, Gustafsson, & Carlstedt, 2002) formed the basis 
for the model, which included the G factor, under which the Gc and Gv factors 
were nested, along with a test specific (Di) factor. All the SweSAT tests were 
hypothesized to be influenced by the G factor. WORD, READ, and ERG were 
hypothesized to load upon Gc as well. The Quant factor was hypothesized to 
influence DTM, DS and Technical Comprehension. 

The hypothesized NF model showed poor fit, but fit was improved by 
adding another residual factor on which all SweSAT tests had loadings. This 
factor was tentatively labeled Knowledge (Knowl). After introduction of this 
factor, the originally hypothesized Gc factor was reduced to a narrow vocabu­
lary factor, and it was relabeled Voc. The broad Knowl factor accounted for 
somewhat more variance in the READ and ERC subtests than it did in the 
other subtests, but it also had an almost equally strong contribution to individ­
ual differences in performance in DTM and DS. This pattern suggests that the 
Knowl factor captures reading skills. Thus, in this model the Gc factor has been 
broken up into one factor representing reading skills and another factor repre­
senting vocabulary. 

The model also included a Gf factor, which had relations to each and every 
subtest. For WORD, READ, and ERC, the Gf factor accounted for some 10% of 
the variance and for DTM and DS, it accounted for 31% and 36%, respectively. 
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Thus, the two problem-solving tests reflect considerably more Gf-variance than 
do the other three subtests. The Gf factor accounted for 33% ofthe variance in 
the total SweSAT score. 

From Study 2, it was concluded that there is a relatively strong general fac­
tor in the SweSAT, which was tentatively interpreted as an analytic factor. 
However, the main result ofthe decomposition ofthe general SweSAT factor is 
that it represents a mixture of Gf and two different Gc components, the latter two 
being the strongest contributors of variance to the total SweSAT score (49%). 

Discussion and Conclusions 

The three studies briefly described here demonstrate some ofthe general prin­
ciples that seem to be involved in heterogeneous tests. One basic principle is 
that a single score based on a heterogeneous test tends to reflect whatever is 
common among the items. However, one important lesson from Studies 2 and 3 
is that care is needed when interpreting the nature of the factor common to a 
collection of subtests. Although it would make some sense to interpret the 
major source of variance in the total SweSAT score as being a factor of general 
cognitive ability, the results of Study 3 clearly demonstrated that the general 
factor of SweSAT is a mixture of Gf and Gc, the latter factor being the most 
important one. The reason for this is that almost all subtests pose quite heavy 
requirements for reading skills, and three subtests also measure knowledge of 
vocabulary. Thus, the bias towards Gc is explained by the fact that all the 
SweSAT subtests are verbally loaded. 

It may, in contrast, be noted that in the considerably more heterogeneous 
SEB battery, the Gf factor accounted for no less than 75% of the variance, 
whereas Gc (or rather Voc) only contributed 10% of the variance in this test. 
Thus, in order to measure a construct with high-referent generality, it is an 
advantage to use a heterogeneous test battery. This observation is certainly not 
new; Messick (1989) argued that heterogeneity of tests may be necessary to 
avoid one of the two major threats to constmct validity, namely, construct 
underrepresentation. As a hypothetical example, he discussed a complex con­
stmct involving three facets. Different aspects of the construct are measured 
by three measures that tap the three facets in different combinations. Messick 
(1989) observed the following: 

By virtue of the overlapping components, the three measures will intercor-
relate positively and appear to converge in the measurement of "something," 
presumably the overall complex construct. Yet each measure is underrepre-
sentative of some aspect ofthe construct. A composite ofthe three measures 
would cover all three aspects and, furthermore, the construct-relevant vari­
ance would contribute to the composite score while the irrelevant variance 
would not. (p. 35) 

Thus, construction of heterogeneous measures is a way to avoid the problem of 
construct underrepresentation in the measurement of high-referent generality 
constructs. 
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The other major threat to constmct validity—namely, constmct-irrelevant 
variance—appears to be a potential problem when a more or less homogenous 
test is used to measure a high-generality construct. For example, the Raven 
Progressive Matrices Test is often used to measure the G factor, but as was 
observed by Gustafsson (2002), the variance of this test is not only affected by 
the G factor, but also by a substantial amount of test-specific variance. In a sim­
ilar fashion, constmct-irrelevant variance is a problem when a homogeneous 
instrument is used to measure a low-generality constmct, but in this situation it 
is the more general sources of variance that form the irrelevant sources of vari­
ance. Even though Thorndike (1951) primarily discussed threats to reliability, 
he made a similar observation. 

Finally, we would like to emphasize that the arguments about the nature 
of the measurement put forward in this chapter are valid only within the 
framework of a particular kind of structural model of the observed phenom­
ena. Thus, if the hierarchical model is rejected in favor of a more traditional 
oblique measurement model, our lines of reasoning cease to make sense. The 
idea that sources of variance of different degrees of generality may be sepa­
rated is based on adoption of a hierarchical structural model and this, in turn, 
is related to choice of particular theoretical positions. Although these choices 
could be challenged, any alternative model must also be defended on theoreti­
cal grounds. Thus, in this sense, psychological measurement is both model 
based and theory based. 
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Using Item Response Theory 
to Disentangle Constructs at 

Different Levels of Generality 

David Thissen and Lynne Steinberg 

The measurement of individual differences on constructs that are not directly 
observable is a cornerstone of research in personahty, social, and health psychol­
ogy, as well as in educational measurement and the study of cognitive ability. 
Psychological constmcts, or latent variables as they are called in statistics, may 
have different scopes or levels of generality. Statistical latent variable models 
help define the generality of constmcts; the models and methods of item response 
theory (IRT) serve that function for test and questionnaire data. 

In what may be the earliest published work that clearly defines in modern 
statistical terms the nature of IRT as a latent variable model, Lazarsfeld (1950) 
wrote the following: 

The practice of testing can be roughly described as follows: The investigator 
assumes that a one-dimensional continuum exists, such as soldier morale, 
anti-Semitism or intelligence. People are assumed to be arranged on this 
continuum in an unknown way. The persons are exposed to a series oftest 
i tems. . . . The scoring system developed for a test always implies certain 
assumptions, however vague, about the relations between performance on 
the items and the hypothetical continuum. Because the "response patterns" 
ofthe people are obtained from actual experiments, we shall call them man­
ifest data; all information inferred as to the nature ofthe continuum or the 
position ofthe people thereon we shall call latent, (p. 363) 

The vintage of Lazarsfeld's (1950) prose and his sociological perspective are 
clearly revealed in his choice of examples ("soldier morale, anti-Semitism or 
intelligence"); he was writing for a volume on data collected about American sol­
diers during World War II, However, substitution of any cognitive proficiency or 
personality trait or state would work as well, and as we shall see, Lazarsfeld's 
writing has been prophetic for IRT. 

We are grateful to Michael Edwards for his MCMC item factor analysis software and his assistance 
with its use. We thank Susan Embretson and James Roberts for suggestions that improved the 
presentation. Any errors that remain are, of course, our own. 
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Lazarsfeld (1950) went on to select an exemplary latent variable ("ethno­
centrism"; denoted x) for purposes of discussion and described three illustrative 
items. Then he began his statistical statement of what he called latent structure 
analysis but that subsequently came to be known as latent trait theory and finally 
item response theory: Lazarsfeld wrote, "We assume that the probability y, that 
respondents check the first alternative in the ith question, is a function fix) of 
their position on the continuum x. The graphical picture of our functions fix) we 
shall call the trace line of i tem j " (p. 364). Contemporary notation uses 8 for 
the latent variable instead of x, and T(0) for the trace line instead of fix), but we 
quote Lazarsfeld directly here. 

After some expansion on this idea, Lazarsfeld (1950) wrote out a thoroughly 
modem definition ofthe nature ofthe latent variable model: 

Al l . . . considerations can . . . be reduced to an analysis ofthe interrelations 
between the i tems. . . . We shall now call a pure test of a continuum x an 
aggregate of items which has the following properties: All interrelationships 
between the items should be accounted for by the way in which each item 
alone is related to the latent continuum, (p. 367) 

Lazarsfeld followed this clear (verbal) definition with a number of disclaimers, 
about the fact tha t it is not necessary to have "pure tests," some tests may be 
multidimensional, and so on. 

Following that , Lazarsfeld (1950) gave "this idea a mathematical formula­
tion" with a statement of local or conditional independence. 

If a group of people has the same x-value—i.e., the same degree of ethno­
centricity—then with ethnocentricity held constant, nothing else "holds the 
two questions together." Thus, for all people with any specific x-value, xc we 
have a fourfold table like the following: 

Item 1 

Endorse 
Do not 
Endorse 

Item 2 

Endorse 

Do not 
Endorse 

P2 

1-P2 

P i 1-Pl 

In a pure test, there is no association between responses to the two items; 
therefore, the entry within the upper left-hand box . . . is equal top! xp2- In 
terms of the trace lines, for any x = xc, the probability of a joint positive 
answer is the product ofthe independent probabilities for the two items 
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fi2(xc)=fl(xc)fi(xc)... So we come to the following definition of a pure test: It 
is an aggregate of items such that the trace line for a joint positive answer 
to several items i, j , k,. . . is the product ofthe trace lines of every item taken 
separately. 

(1.1) &...(*) =fi(x)fj(x)fh(x)... 

In actual experience, of course, it can easily happen that equation (1.1) is not 
fulfilled. There might be a little detail in the wording oftwo questions that 
"ties them together" beyond what can be accounted for by the underlying 
continuum. Thus for people who have the same x-value, we would find that 
fnix) is greater or less than f̂ x) fzix). In this case, we usually say that there 
has entered an additional factor, that we do not have a pure measurement 
ofthe continuums, (pp. 367-368) 

Thus, the ideas of local independence, and then local dependence (LD), some­
thing that" 'ties [the questions] together' beyond what can be accounted for by the 
underlying continuum," were clearly presented by Lazarsfeld over 50 years ago. 
Indeed, without close ties to the psychometric factor analytic tradition, Lazarsfeld 
attributed LD to "an additional factor"; he probably did not mean to use that term 
in the sense of factor analysis, but that is nonetheless correct. 

The topics of this chapter are the use of IRT in the presence of LD and the 
use of IRT to distinguish between LD—covariation between item responses 
that does not reflect consistency based on the underlying trait that is the 
intended dimension of measurement—and the dependence ofall ofthe items on 
the underlying continuum one intends to measure. 

Local Dependence and Local Independence 

In contemporary notation, the model assuming local independence is that 
the trace line for the joint response to two items is the product ofthe trace lines 

r(u1>u2|e)=T(u1|e)7,(u2|e) (i) 

in which T(M4|9) is the trace line for response k to an item, and T(uj,uk\Q) traces 
the likelihood over 0 ofthe response pattern {Uj, u^. For locally dependent items, 
there is inequality: 

r (u i ,u2 |e ) ? t r (u 1 | e ) r («2 |e ) . (2) 

For example, Thissen and Steinberg (1988) described a set of four items 
(originally presented by Bergan & Stone, 1985) from a test of preschool mathe­
matics: (a) Identify the numeral "3," (b) identify the numeral "4," (c) match the 
numeral 3 with three blocks, and (d) match the numeral 4 with four blocks. Not 
surprisingly, Thissen and Steinberg (1988; and subsequently Hoskens & De 
Boeck, 1997) observed that the data suggest that responses to the two "identify­
ing" items are more correlated than is explained with a single unidimensional 
mathematics proficiency construct across the four items, as are the responses to 
the two "matching" items. 
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As another example, Steinberg and Thissen (1996) discussed a set of three 
items comprising a Recent Victimization Scale from a larger study examining 
risk factors for violence in a sample of adult men admitted to acute-care inpatient 
units at a large urban mental health center (Klassen & O'Connor, 1994). 

Those three items are as follows: 

In the past 6 months, has anyone . . . 
Push:... pushed, shoved, or slapped you in an unfriendly way? 
Hit:... hit you with a fist or object of some sort? 
Weapon: . . . threatened to hurt, or actually hurt you with a gun, knife, or 
weapon? 

Again, not unexpectedly, and reminiscent of Lazarsfeld's (1950) remark about 
something that "'ties [the questions] together' beyond what can be accounted 
for by the underlying continuum," responses to the Push and Hit items are 
more correlated than is well explained by a single latent variable underlying all 
three items. 

Thissen, Steinberg, and Mooney (1989) described the analysis of a set of 
reading comprehension items on a verbal proficiency test for graduate admis­
sions. The 22 items were administered in blocks of 7, 4, 3, and 8 items following 
four passages. Thissen et al. (1989) presented evidence from item factor analysis 
that there was some degree of LD induced by the passages. 

What can IRT do with such sets of items? To answer that question, this 
chapter has three sections. The chapter begins with a description of ideas of local 
independence and LD, treating the topic historically, mathematically, and with 
examples. The second section (to follow immediately) describes some approaches 
to the detection of LD. The third section discusses alternative approaches to 
modeling tests that may contain locally dependent items. This has been done by 
redefining the item responses, by constructing special IRT models with inter­
action parameters to explicitly parameterize LD, and with the use of item factor 
analysis; examples accompany the discussion of all three approaches. 

Detection of Local Dependence 

One might hope to use item factor analysis to detect LD, following Lazarsfeld's 
(1950) suggestion that LD reflects the effects of an additional factor. However, in 
practice that is difficult with contemporary implementations of item factor 
analysis (using widely available software). 

As an illustration of both the potential for the detection of LD and the diffi­
culties of using item factor analysis for this purpose, consider the factor loadings 
in Table 6.1, which is a partial summary of factor loadings for items on the Cook-
Medley Hostility Scale of the Minnesota Multiphasic Personality Inventory 
(MMPI). Table 6.1 shows a subset ofthe results reported by Steinberg and 
Jorgensen (1996): Only 24 ofthe 27 items are included in the table, and only the 
largest loading for each item is shown. Steinberg and Jorgensen (1996) obtained 
this solution using full-information item factor analysis and full-information 
maximum likelihood estimation (FIML), as implemented in the computer soft-
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Table 6.1. Partial Summary of Factor Loadings for Items on the Cook-Medley 
Hostility Scale ofthe MMPI 

Item 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1 

.75 

.60 

.56 

.47 

.46 

.38 

.34 

.33 

.33 

2 

.32 

.85 

.78 

Factor 

3 

.65 

.59 

.46 

.39 

.39 

.36 

4 

.81 

.62 

.51 

.39 

5 

.81 

.57 

Note. Shown is a subset of the FIML results reported by Steinberg and Jorgensen. Only 24 of 
the 27 items are included in the table, and only the largest loading for each item is shown. Data 
from "Uses of item response theory and the testlet concept in the measurement of psycho­
pathology" by L. Steinberg & D. Thissen, 1996, Psychological Methods, 1, 81-97. Copyright 
1996 by American Psychological Association. FIML = full-information item factor analysis and 
maximum likelihood estimation; MMPI = Minnesota Multiphasic Personality Inventory. 

ware Testfact (Wilson, Wood, & Gibbons, 1998). This method of analysis takes 
into account the dichotomous nature of the true-false MMPI responses by 
using a multidimensional normal ogive IRT model to fit the data. The loadings 
(partially) shown in Table 6.1 represent a promax-rotated exploratory factor 
solution with five factors. The Cook-Medley scale had been expected to show 
multidimensionality as several researchers (e.g., Barefoot, Dodge, Peterson, 
Dahlstrom, & Williams, 1989) have suggested categorizations of the item set. 
The pattern of factor loadings suggests three "conceptual" factors and two addi­
tional factors due to LD. 

For example, Items 11 and 12 (as numbered in Table 6.1), "Most people will 
use somewhat unfair means to gain profit or an advantage rather than to 
lose it" and "I think most people would lie to get ahead" are "tied together" (in 



128 THISSEN AND STEINBERG 

Lazarsfeld's words) by the phrase "most people" followed by words to the effect 
that they would do evil to gain advantage. Those items are the only two items 
with particularly large loadings on Factor 2, but a factor specific to those items, 
although comprehensible, is probably not one ofthe underlying constructs that 
the scale is intended to measure. 

As another example, consider Items 23 and 24 (as numbered in Table 6.1), 
"I don't blame people for trying to grab everything they can get in this world" 
and "I do not blame a person for taking advantage of people who leave them­
selves open to it." Again, there is some wording in common—"I do not blame," 
followed by some kind of taking advantage—another comprehensible factor but 
not an intended one. 

In principle, one might expect to be able to use item factor analysis to 
detect the presence of such LD item pairs in general. However, the blank space 
in Table 6.1 represents a problem: estimation ofthe smaller loadings for each 
item on each factor other than that on which this item has its largest loading. 
To detect LD with exploratory factor analysis, each LD pair of items creates its 
own factor. In an exploratory solution, all of the other items also have esti­
mated loadings for that factor. The factor loadings for the other items are 
expected to be random deviations from zero; however, the presence of all of 
those additional parameters in the model makes estimation more difficult for 
the entire parameter set. Only large samples are amenable to this factor ana­
lytic approach; Steinberg and Jorgensen (1996) used a sample of 1,138 male 
respondents to obtain the results partially shown in Table 6.1. Even so, if there 
are many instances of LD, the number of factors rises beyond the comfortable 
scope of FIML exploratory factor analysis. 

As alternatives to item factor analysis, residual-based statistics for IRT 
have been developed to detect LD; among them are Yen's (1984) Q3 statistic, 
Chen and Thissen's (1997) LD indices, and others. These statistics are based 
on a process that involves fitting a unidimensional IRT model to the data and then 
examining the residual covariation between pairs of items, which should be 
zero if the unidimensional model fits. Steinberg and Thissen (1996) described 
the use of Chen and Thissen's (1997) G2 LD index to identify locally depend­
ent items among 16 dichotomous items on a scale measuring history of vio­
lent activity. Although this approach is more practical than the use of item 
factor analysis to detect LD, computation of the relevant statistics has not 
yet been implemented in widely available software. The statistics themselves 
have not been formally generalized to items with more than two response 
categories. Both of these facts have limited the use of such statistics in prac­
tice, although we expect that both limitations will be removed in future IRT 
software. 

For tests or questionnaires with relatively few items and Likert-type 
response scales, the modification indices (Mis) of structural equation modeling 
(SEM) software may also serve as statistics to detect LD. When interitem poly-
choric correlations are fitted with a one-factor model, the result is a limited 
information parameter estimation scheme for the graded normal ogive model. 
The Mis for such a model are one degree of freedom chi-square scaled statistics 
that suggest unmodeled excess covariation between items—in the context of 
item factor analysis that is LD. 
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As an example, consider the Mis in Table 6.2 obtained from data described 
by Hill et al. (2007) for the PedsQL™ Social Functioning Scale items: 

In the past ONE month, how much of a problem has this been for you... 

1. I have trouble getting along with other kids 
2. Other kids do not want to be my friend 
3. Other kids tease me 
4. I cannot do things that other kids my age can do 
5. It is hard to keep up when I play with other kids 

Responses to these items are on a Likert-type 5-point response scale ranging 
from 0 (never a problem) to 4 (almost always a problem). The Mis in Table 6.2 
were obtained with the computer software Lisrel 8 (Joreskog and Sorbom, 1996) 
and an English-speaking sample of children, with data obtained by parent-proxy 
report. Fitting a one-factor model to the polychoric correlations among those 
five items yielded a model with an overall goodness of fit, x2(5, iV = 1,289) = 131, 
p < .0001, RMSEA = .14, and RMR = .12; in other words, a poor fit. Table 6.2 
shows a large Ml for the pair of Items 4 and 5: 70, which is very large for a sta­
tistic distributed as x2(l) under the null hypothesis of no LD. Those items both 
involve performance: doing what other kids can do and keeping up with other 
kids. The other items are more social in nature. Analysis of other samples 
(child self-reports as opposed to parent proxy reports, data from adolescents, 
data from Spanish speaking children) consistently yielded high Mis for the 
same item pair on this scale. 

In the context of these five items, the pair of Items 4 and 5 exhibits LD. As 
a matter of fact, there may be a factor that could usefully be measured if there 
were more items. Social aspects of health-related quality of life may usefully be 
differentiated into the measurement of the quality of social interaction sepa­
rately from the measurement of performance. In this case, LD in one context 
may be a suggestion of an important constmct in a broader context. 

Hill et al. (2007) described similar examples for other items ofthe PedsQL™ 
scales, illustrating the usefulness of this approach for Likert-type scales with 
small numbers of items. Unfortunately, the weighted least squares estimation of 
the confirmatory factor model on which these results are based does not work 
well for larger numbers of items, and other solutions will be required. 

Table 6.2. Modification Indices for One-Factor Model Fitted to Interitem Polychoric 
Correlations Among Items ofthe PedsQL Social Functioning Scale, Used as Indices 
of Local Dependence 

Modification indices 

Item 

2 
3 
4 
5 

1 

11 
1 

39 
36 

2 

24 
3 

23 

3 

4 
15 

4 

70 
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Hill et al. (2007) also described how the IRT analysis itself may give clues 
about LD. Excessively high values ofthe slope parameter for a pair or triplet 
of items may indicate LD: The high slope values may indicate tha t the t ra i t 
has come to be defined as the latent variable tha t explains the high covari­
ance between those two items. As an example, consider results obtained with 
the PedsQL™ Physical Functioning Scale: 

In the past ONE month, how much of a problem has this been for you . . . 

1. It is hard for me to walk more than one block 
2. It is hard for me to run 
3. It is hard for me to do sports activity or exercise 
4. It is hard for me to lift something heavy 
5. It is hard for me to take a bath or shower by myself 
6. It is hard for me to do chores around the house 
7. I hurt or ache 
8. I have low energy 

The left panel of Figure 6.1 shows the trace lines for Samejima's (1969, 
1997) graded model fitted to Item 3, when the scale comprises Items 1-4 and 
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Figure 6.1. Top left: The trace lines for the graded model for Item 3 ("It is hard for me 
to do sports activity or exercise"; responses from 0 = never a problem to 4 = almost always 
a problem) ofthe PedsQL Physical Functioning Scale, when the scale comprises Items 1-4 
and 6-8. Top right: The trace lines for Item 3 when the parameters ofthe model were esti­
mated for the scale comprising Items 3-4-6-7-8. The expected score (0-4) and item infor­
mation functions are in the center and lower panels, showing the consequences of higher 
(left) and lower (right) slope parameters. 
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6-8 (Item 5 was set aside because very few respondents indicated difficulty 
with bathing). As a matter of fact, Hill et al. (2007) noticed that Items 1, 2, 
and 3 all appeared to be very discriminating, whereas Items 4 and 6-had 
lower slope parameter estimates. 

Suspecting that Items 1, 2, and 3 might be a locally dependent triplet on the 
basis of their very similar content, Hill et al. (2007) also estimated item parame­
ters omitting each pair of those three items in turn, fitting reduced five-item 
scales as Items 1-4-6-7-8,2-4-6-7-8, and 3-4-6-7-8. If the data had met the assump­
tion of local independence, the result would have been essentially the same fitted 
trace lines for each item regardless of which ofthe other items are included in the 
analysis. However, the observed result was that when analyzed without the other 
two ofthe 1-2-3 triplet, each ofthe first three items was fitted with a much lower 
estimated slope, and the other four items were fitted with correspondingly 
higher slopes. The right panel of Figure 6.1 shows the fitted trace lines for Item 3 
when the parameters of the model were estimated for the scale comprising 
Items 3-4-6-7-8, showing the much lower discrimination of Item 3 in that set. 

The first analysis, yielding the trace lines shown in the left panel of 
Figure 6.1, is a classic example of "8 theft." Responses to the first three items 
(walking, running, and sports and exercise) are so highly related among them­
selves that when they are analyzed together 8 becomes the latent variable that 
explains that covariance, and the other items' topics are relegated to second-class 
status. When only one ofthe first three items is included on the scale, 8 becomes 
a latent variable that explains the covariation among a more varied set of physi­
cal activities, and the items are much more equally discriminating as indicators 
the respondent's position on that continuum. 

After the fact, when data yield very high estimates of discrimination param­
eters for two or three items, LD (which means another factor for those items) may 
be suspected. However, it is not clear a priori how often LD may lead to high slope 
estimates, or 8 theft. There is a limited literature that suggests that there can 
be any of a number of outcomes when unidimensional IRT models are fitted 
to multidimensional data. Reckase (1979) fitted the unidimensional three-
parameter logistic model to a small number of multidimensional data sets and 
concluded that when there are several independent factors the model "picks 
one factor and discriminates among ability levels on it, while ignoring the 
other factors" (p. 226), whereas in situations that have a first factor that is large 
relative to the other factors, the model measures the first factor. Drasgow and 
Parsons (1983) and Harrison (1986) simulated multidimensional data using 
a second-order factor model with simple stmcture at the first level and found 
that when the contribution ofthe second-order general factor was large, that 
factor became 8 for the IRT model; however, as the strength ofthe general factor 
decreased, the IRT model tended to measure the largest of the group factors. 
Working with multidimensional data from a model that involved items that 
measured more than one factor, Yen (1984) observed IRT analyses that made 8 a 
composite ofthe underlying factors. 

Because of the computational limitations of the 1970s and 1980s, the 
studies by Reckase (1979), Drasgow and Parsons (1983), Yen (1984), and 
Harrison (1986) used a very small number of example data sets with large num­
bers of items. They also obtained IRT parameter estimates obtained with the 
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computer software LOGIST (Wingersky, Barton, & Lord, 1982), which imple­
ments an approach to estimation no longer in widespread use. Those studies did 
not establish clear general conditions under which an IRT analysis of multi­
dimensional data might measure one general factor in the data, or one ofthe fac­
tors reflected by a subset ofthe items, or a composite of more than one factor. IRT 
analyses of smaller numbers of items using modern maximum marginal likeli­
hood estimation, as was done with the PedsQL Physical Functioning Scale, has 
not been studied in simulation. So although there is anecdotal evidence, as pre­
viously described, that IRT analyses may reveal LD by exhibiting 8 theft, it is 
not clear whether that happens often or rarely in the case of data with locally 
dependent item responses. 

Mode l i ng Tes t s Wi th Loca l D e p e n d e n c e 

At the end of the preceding section, we implicitly suggested omitting items 
from a scale as a method to deal with LD. That can always be done; if one item 
of an LD pair is omitted, the LD disappears, and if the scale is otherwise uni­
dimensional, it becomes one for which local independence holds. However, 
in many situations, omitting items is not an attractive solution, and some 
strategy is desired that permits the use of standard unidimensional IRT 
models, with all of their attendant advantages and available software. One 
way to accomplish that goal is to combine pairs or triplets of items that 
exhibit LD into a single super item, or testlet, for purposes of item analysis 
and test scoring (Steinberg & Thissen, 1996; Thissen & Steinberg, 1988; 
Yen, 1993). 

Redef in ing t h e " I t e m " R e s p o n s e s 

As was mentioned in the introduction to this chapter, Thissen and Steinberg 
(1988) described a set of four items (originally presented by Bergan & Stone, 
1985) from a test of preschool mathematics that exhibit LD in pairs. To fit data 
obtained with those items with an IRT model, we redefined the items as follows 
to constmct two testlets: 

• Redefined Item 1: Identify numerals 3 and 4 
• Redefined Item 2: Match the correct numeral (again, 3 or 4) with a 

number of blocks. 

For item analysis, the responses have been redefined: (a) correctly identify 
(match) neither 3 nor 4, (b) correctly identify (match) only 3, (c) correctly identify 
(match) only 4, and (d) correctly identify (match) both 3 and 4. 

With the items so redefined, Thissen and Steinberg (1988) fitted the item 
response data with Bock's (1972,1997) nominal model, 

r(^) = exp(a*e + cO/X e x P( a ' 0 + c ') (3) 
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to obtain trace lines for each ofthe four response categories (k) for each (redefined) 
item, by estimating the sets of parameters denoted ak and ck. The estimated trace 
lines are shown in Figure 6.2. Note in the top panel of Figure 6.2, for the "identi­
fying" item, the response categories are semiordered, with "identifying neither" 
and "identifying 3" both related to low levels of mathematics proficiency, 
"identifying 4" an intermediate response, and "identifying both" associated with 
high levels of mathematics proficiency. For the "matching" testlet, the patterns 
differ: "matching both" is associated with high levels of proficiency and all other 
responses indicate lower levels of knowledge. 

The analysis ofthe "identify" and "match" items by Thissen and Steinberg 
(1988) previously described and the more theoretically elaborate investigation 
of these same data by Hoskens and De Boeck (1997) were intended to enhance 
our understanding ofthe latent structure underlying responses to those ques­
tions. However, in other contexts a testlet-based analysis of item sets with 
embedded LD may serve other purposes. There is a large literature on testlets, 
primarily in educational research, that addresses their use in test construction, 
especially for adaptive tests; their use to redefine items on measures of educa­
tional achievement so IRT can be used; and inaccuracies that may arise in the 

- 2 - 1 0 1 
Numerical Knowledge 

, _ 

(0 
c 
o 
Q. 

DC 6 " 

E 

1-

o 
o 

Mone 

. — 

^ / 

3 or 4 / \ 

T^^Cx 
__—-"^^ ^ ^ 

, - - Both 

• • ^ _ _ ^ 

i i i I I 1 

- 3 - 2 - 1 0 1 2 
Numerical Knowledge 

Figure 6.2. Nominal model trace lines for the response categories for redefined Item 1: 
Identify the numerals 3 and 4 (upper panel) and redefined Item 2: Match the correct 
numeral (again, 3 or 4) with a number of blocks (lower panel). 
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computation of reliability when LD is ignored and the "wrong" formulas for reli­
ability are used (Lee, Brennan, & Frisbie, 2000; Sireci, Thissen, & Wainer, 1991; 
Wainer & Thissen, 1996). Testlet-based computations may correct the latter. 

Figure 6.3 shows estimated trace lines (obtained with item parameters 
provided by Thissen et al., 1989) for the numbers of correct responses to 
multiple-choice items following reading passages on a reading comprehension 
test. The trace lines are those of Bock's (1972, 1997) nominal IRT model and 
show that larger numbers of correct responses are associated with higher lev­
els of reading proficiency, and lower numbers of correct responses are associ­
ated with lower levels of proficiency, although less clearly in numerical order 
because of the effects of guessing on the number correct score. The primary 
motivation of the testlet-based analysis of the reading comprehension data 
was to obtain better estimates ofthe reliability ofthe test in the presence of 
LD induced by the passages. 

With an example much more similar to the analysis ofthe "identifying" and 
"matching" items, Steinberg and Thissen (1996) described an analysis of three 
items composing a Recent Victimization Scale from a larger study examining 
risk factors for violence in a sample of adult men admitted to acute-care inpatient 
units at a large urban mental health center (Klassen & O'Connor, 1994): 

- 2 - 1 0 1 2 
Reading Comprehension 

- 3 - 2 - 1 0 1 2 
Reading Comprehension 

Figure 6.3. Nominal model trace lines for the numbers of correct responses to multiple-
choice items following two reading passages on a reading comprehension test. 
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In the past 6 months, has anyone . . . Push: . . . pushed, shoved, or slapped 
you in an unfriendly way? 
Hit:... hit you with a fist or object of some sort? 
Weapon: . . . threatened to hurt, or actually hurt you with a gun, knife, or 
weapon? 

Steinberg and Thissen (1996) combined the responses to the Push and Hit items 
into a new item with four response categories: "Neither Push nor Hit"; "Push but 
not Hit"; "Hit but not Push"; and "Both Push and Hit." Including the Weapon 
item, this creates a two-item test: The Weapon item remains dichotomous, and 
the combined Push-Hit testlet has four response categories. 

When such a testlet is constructed, the main question for data analysis is: 
What is the scoring order of responses for the four-category item? Fitting the nom­
inal IRT model serves to investigate the order of the four-response categories, 
in combination with the two-parameter logistic model for the Weapon item. 
Steinberg and Thissen (1996) described the investigation of category order and 
found that fitting with the nominal model suggested that the testlet's responses 
were approximately graded in the order that they are listed above. For simplic­
ity, Steinberg and Thissen (1996) then fitted the data obtained with the testlet 
scoring with Samejima's (1969,1997) graded model, which fits nearly as well as 
the nominal model. 

Figure 6.4 shows that combining LD item responses into testlet scoring cate­
gories can have a good deal of effect on the implications that IRT suggests for a set 
of items. The upper left panel of Figure 6.4 shows the original two-parameter 
logistic trace lines for both positive and negative responses that were obtained fit­
ting the three items, and the lower panel shows all eight (multiplicative) combi­
nations of those trace lines (with the Gaussian population distribution) that are 
the "posterior densities" for each response pattern. The posterior densities are the 
theoretical distributions of respondents in the population who would select each 
response pattern, and the average of each of those densities is the expected a pos­
teriori (EAP) IRT scale score for that response pattern. The densities in the left 
panel of Figure 6.4 are sharply divided between those for which the responses to 
the Push and Hit items are negative (OOx) and those for which it is positive (llx); 
we note that combinations in which the responses are different for the Push and 
Hit items have relatively small posterior areas (proportions ofthe population, and 
so they are rare). The IRT analysis illustrated in the left panel of Figure 6.4 sug­
gests "low versus high" scoring ofthe scale, with two fairly discrete groups. 

In contrast, the right panel of Figure 6.4, showing the trace lines for the 
Weapon item as dichotomously scored and the Push and Hit items as a single 
graded testlet in the upper panel, has eight posterior densities in the lower panel 
that represent the same response patterns, in the approximately same propor­
tions, as those in the left panel of Figure 6.4, but they are much different in shape. 
Instead of a near-dichotomy on the Push-Hit combination, as suggested by 
the analysis represented by the left panel, the results ofthe model shown in the 
right panel of Figure 6.4 suggest a much more continuously graded sequence of 
response patterns from low to high: Expressed as responses to the original (Push, 
Hit, Weapon} items the more popular response patterns are ordered {0,0,0), 
{0,0,1}, {1,1,0} and {1,1,1} with posterior densities that overlap a good deal. 
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Figure 6.4. Left: The upper panel shows the two-parameter logistic trace lines for both 
positive and negative responses obtained fitting the three items: Push, Hit, and Weapon; 
the lower panel shows all eight (multiplicative) combinations of those trace lines (with the 
Gaussian population distribution) that are the posterior densities for each response pat­
tern. Right: The upper panel shows the two-parameter logistic trace lines for both positive 
and negative responses the Weapon item with graded model trace lines for the response 
patterns for the Push and Hit items as a testlet; the lower panel shows all eight posterior 
densities. The first digit of each response pattern is 0-3 for the testlet response, and the 
second digit is 0-1 for the Weapon item response. 

We conclude this section with the remarks that redefinition of the items 
into testlets can yield a conventional unidimensional IRT analysis that accom­
modates LD and that may provide more accurate estimates of measurement 
precision than may be obtained if LD is ignored. Scores obtained with the re­
defined items and the testlet model may be less distorted than scores that 
would be obtained fitting an IRT model that assumes local independence. What 
redefinition ofthe items does not do by itself is produce an item analysis at the 
individual item level. In the following section, we discuss models that can do that. 

IRT Models With Interact ion Parameters 

Hoskens and De Boeck (1997) described a very flexible class of parametric 
models for LD that may arise from different response processes. They began their 
explanation with reference to the one-parameter logistic model, parameterized as 

T(ui\Q) = 
exp [MJ (aB-pj)] 
l + exp[(ae-Pi)] 

(4) 
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in which u is the item response to item I; a and p are the discrimination param­
eter (equal for all items) and the difficulty parameter, respectively; and 8 is the 
latent variable being measured. 

Proceeding with their analysis, Hoskens and De Boeck (1997) described a 
class of models for a pair of items exhibiting LD; for their models, Table 6.3 shows 
the log odds of each pair of responses to {0,0}, for one-parameter logistic trace fines 
with "interaction?" appended for two ofthe response patterns, to stand in for addi­
tional terms that are included for LD induced by different processes. Hoskens and 
De Boeck distinguished between order and combination dependencies, where 
order dependencies arise when an item's response is influenced by the response to 
an earlier item, and combination dependency is their term for symmetrical, 
mutual effects on both item responses (separately from the trait being measured). 
Crossed with that distinction, Hoskens and De Boeck also distinguished between 
constant effects (that are independent of 8) and dimension-dependent effects that 
are functions of 8 (linear, in their models). 

Each ofthe four combinations of order versus combination dependency with 
constant versus dimension-dependent effects produces a different set of replace­
ments for the term labeled "interaction?" in Table 6.3; the interested reader is 
referred to Hoskens and De Boeck (1997) for the fairly involved details. In some 
cases Hoskens and De Boeck's models require speciahzed procedures for parame­
ter estimation. However, it is interesting to note that some of their models are 
algebraically equivalent to redefining the response patterns to a pair of items as a 
response-pattern testlet and fitting each response pattern as a response category 
with Bock's (1972,1997) nominal model as we did in the previous section. Indeed, 
Hoskens and De Boeck do just that with the data from the "Match" and "Identify" 
3 and 4 items described in the previous section, providing a thorough theoretical 
analysis for a procedure that had been entirely data analytic in origin. 

Hoskens and De Boeck generalized their models from the one-parameter 
logistic to the two-parameter logistic, but the generalized models resist the 
simple tabulation shown in Table 6.3. Their analysis brings consideration of 

Table 6.3. Log Odds of Each Pair of Responses to {0,01, for One-Parameter Logistic 
Trace Lines with "Interaction?" Appended for Two ofthe Response Patterns, to 
Stand in for Additional Terms That Appear in Models Described by Hoskens and 
De Boeck (1997) 

Response pattern Log odds of each pair of responses to {0,0} 

10,0} 

{1,0} 

{0,1} 

{1,1} 

In 

In 

In 

In 

r(o,o|e) 
LT(o,o|e)J 

r(i,o|9)" 
[T(o,o|e). 

mije)" 
Lr(o,o|e). 

"T(l,l|9)" 
.T(o,o|e). 

= 0 

= (aO - Pi) + interaction? 

=(ae-p2) 

= (aO - Pi) + (a9 - p2) + interaction? 
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LD in item responses much closer to integration with contemporary cognitive 
psychology, which is a very promising step for psychometrics. 

Approaching the modeling problem from a different perspective, with a dif­
ferent goal, Bradlow, Wainer, and Wang (1999) suggested a modification ofthe 
normal ogive IRT model, 

T(uij\e) = 0(zij), (5) 

with the addition of a random interaction parameter y^y) that varies over per­
sons i for each testlet dU) with which item j is associated, so that the expression 
for the item response function includes proficiency (8), slope and discrimination 
parameters, and the random interaction parameter yay,: 

Zv = aj(Qi-bj-yidu)) (6) 

In this model, the parameter Y;d0) is a random variable over persons, like 8. Yid0) 

is defined to have a mean of zero; only its variance (for each testlet) is an esti­
mated parameter. If the variance of yidU) is zero, there is no LD and the model 
is for locally independent items. As the variance increases, the model describes 
increasing LD among the items. This model has subsequently been generalized 
for graded items and dichotomously scored multiple-choice items (Wainer, 
Bradlow, & Du, 2000; Wang, Bradlow, & Wainer, 2002). 

The main goal Bradlow, Wainer, and Wang (1999) specified for their model 
was the accurate computation of standard errors in the presence of LD, which 
can lead to underestimates of standard errors if the LD is ignored (Wainer & 
Thissen, 1996). However, there are other conceptual advantages associated 
with this model as well: The Bradlow-Wainer-Wang model is, as a matter of 
fact, a highly restricted item factor analysis, or multidimensional IRT (MIRT) 
model. If the expression 

Zjj=aj(Qi-bj-yjdU)) (7) 

is expanded by distributing the slope parameter, we obtain 

zs = afii - ajbj - ajyunj). (8) 

If we then relabel the random y^y) parameter 8dy), we have a bifactor model 
with intercept dj = afy and additional 8s for each testlet yyy) 

zy = ajQn - afiuHj) - d j . (9) 

Table 6.4 shows the constrained bifactor model parameters for 10 hypothet­
ical items in three testlets, showing the Bradlow-Wainer-Wang model expressed 
as a restricted item factor analysis model, with the variance of the testlet-
specific 0s (the y^y/s) estimated. We note that this is a highly restricted MIRT 
model, with the slope parameter for each item for its testlet-specific factor con­
strained to be equal to its slope parameter for the general factor. (The negative 
sign on the testlet-specific slopes is an arbitrary consequence of the arbitrary 
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Table 6.4. Constrained Bifactor Model Parameters for a Hypothetical 10 Items in 
Three Testlets, Showing the Bradlow-Wainer-Wang Model Expressed as a Restricted 
Item Factor Analysis Model, With the Variance ofthe Testlet-Specific Qs (the y ^ s ) 
Estimated 

Slope parameters Intercepts 

a n 
0 2 1 

O a i 

0 4 1 

asi 
aei 
a n 
asi 
a n 
a IOI 

- a n 
- 0 2 1 

- 0 3 1 

- 0 4 1 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

- 0 5 1 

- O e i 

- a n 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

- O g l 

- O g i 

- O i o i 

di 
d2 

d3 

dt 
d5 

d6 

d, 
ds 
d9 

dw 

sign of yidy) in the original parameterization. The combination of the appar­
ently equal factor loadings for the group factors in Table 6.4 with estimated 
factor variances is actually a set of proportionality constraints [for the factor 
loadings in a model with all factor variances equal to 1.0] as described by 
Yung, McLeod, & Thissen, 1999, in their explication ofthe relationship between 
the bifactor model and second-order factor analysis. The combination of the 
algebra previously shown with the proofs provided by Yung et al. show that 
the Bradlow-Wainer-Wang model is actually reparameterized second-order 
factor analysis.) 

Table 6.5 shows general bifactor model parameters for 10 hypothetical 
items in three testlets, as might be estimated using the algorithm described by 

Table 6.5. General Bifactor Model Parameters for a Hypothetical 10 Items in Three 
Testlets, as Might Be Estimated Using the Algorithm Described by Gibbons and 
Hedker (1992) and Implemented in Testfact (Wilson et al., 1998) 

O n 

O21 

0 3 1 

0 4 1 

a 5 i 

O e i 

a n 

Ogi 

Ogi 

O101 

Slope parameters 

0 1 2 

0 2 2 

0 3 2 

0 4 2 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 5 3 

0 6 3 

0 7 3 

0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

084 

0 9 4 

0104 

Intercepts 

di 
d2 

d. 
dt 
d5 

de 
d, 
ds 
d9 

dw 

Note. In this case, the testlet-specific slopes are estimated and the correlation matrix among the 
factors is R = I. 
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Gibbons and Hedeker (1992) and implemented in Testfact (Wilson, Wood, & 
Gibbons, 1998). In this case, the testlet-specific slopes are estimated and the cor­
relation matrix among the factors is R = I. Comparison of Tables 6.4 and 6.5 and 
reference to the proofs provided by Yung et al. (1999) show that the Bradlow-
Wainer-Wang model is hierarchically nested within the more general item 
bifactor model, indicating that both are mathematical models for the "addi­
tional factor" that Lazarsfeld (1950) suggested induces LD. 

M u l t i d i m e n s i o n a l Mode l s 

Full information item factor analysis, or equivalently maximum marginal 
likelihood estimation for MIRT, was available only in its original exploratory 
form when Thissen et al. (1989) made use ofthe technique to examine the 
degree to which passages induced LD on the reading comprehension test 
mentioned in the introduction to this chapter. That analysis involved an 
oblique rotation of a four-factor exploratory solution using item response 
data for 22 items that were administered in blocks of 7, 4, 3, and 8 following 
four passages. The factor analytic results suggested correlated factors some­
what aligned with the passage structure, but the correspondence was not 
perfect. 

Gibbons and Hedeker's (1992) algorithm for FIML bifactor analysis has 
subsequently been added to the computer software Testfact (Wilson, Wood, & 
Gibbons, 1998). As we showed in the immediately preceding section of this 
chapter, bifactor analysis is an obvious and straightforwardly interpretable 
method to investigate the degree of LD within clusters of items. As a concrete 
illustration, Table 6.6 shows the bifactor three-parameter normal ogive MIRT 
model slope parameter estimates obtained with FIML for the data obtained 
with the set of reading comprehension items described by Thissen et al. (1989). 
The 22 items were administered in blocks of 7, 4, 3, and 8 following four pas­
sages; those passage-based groups of items determined the structure of the 
passage specific factors (Factors 2-5) in the analysis. 

Although it is reasonably clear to those familiar with IRT (and MIRT) that 
many of the slope parameters in Table 6.6 on the passage-specific factors are 
rather large, the current implementation ofthe ML estimation algorithm does 
not provide statistical tests ofthe null hypotheses that individual loadings on 
the passage specific factors are zero. (Nonzero loadings on passage specific fac­
tors indicate LD. One can obtain an omnibus likelihood ratio test for the null 
hypothesis that the loadings on the passage specific factors are zero in aggre­
gate, but that is not entirely what is desired.) 

Using the alternative Markov chain Monte Carlo (MCMC) approach to 
estimation for confirmatory item factor analysis, Edwards (2005) implemented 
Bayesian estimation for a number of models, including the bifactor three-
parameter normal ogive MIRT model. Table 6.6 also shows the bifactor three-
parameter normal ogive MIRT model slope parameter estimates obtained with 
MCMC for the same data. Comparing the ML and MCMC entries in Table 6.6, 
we first note that the two methods (ML and MCMC) yield very similar param-
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Table 6.6. Bifactor Three-Parameter Normal Ogive MIRT Model FIML and MCMC 
Slope Parameter Estimates for Data Obtained With Passage-based Reading 
Comprehension Items 

Passage/ 
Item 

l / l 
1/2 
1/3 
1/4 
1/5 
1/6 
1/7 
I I / 8 
I I / 9 
11/10 
11/11 
III/12 
III/13 
III /14 
IV/15 
IV/16 
IV/17 
IV/18 
IV/19 
IV/20 
IV/21 
IV/22 

ML 

0.52 
0.31 
0.66 
0.77 
0.39 
0.46 
0.45 
0.50 
1.08 
0.78 
0.73 
0.76 
0.85 
0.46 
0.54 
0.71 
0.79 
0.94 
0.48 
0.54 
0.49 
0.76 

1 

MCMC 

0.56 
0.32 
0.67 
0.80 
0.44 
0.49 
0.46 
0.51 
1.02 
0.79 
0.75 
0.99 
0.87 
0.54 
0.54 
0.71 
0.77 
1.00 
0.48 
0.55 
0.50 
0.76 

ML 

0.34 
0.21 
0.39 
0.18 
0.46 
0.32 
0.19 

2 

MCMC 

0.20 
0.22 
0.23 
0.13 
0.64 
0.45 
0.29 

Factor 

ML 

0.40 
1.53 
0.58 
0.76 

3 

MCMC 

0.40 
1.41 
0.59 
0.79 

ML 

0.44 
0.39 
0.21 

4 

MCMC 

0.88 
0.30 
0.34 

ML 

0.15 
0.05 
-.09 
0.73 
0.34 
0.31 
0.27 
0.46 

5 

MCMC 

0.16 
0.09 
0.04 
0.86 
0.36 
0.32 
0.26 
0.48 

Note. The 22 items were administered in blocks of 7, 4, 3, and 8 following four passages. MCMC 
slope estimates printed in italics are within two posterior standard deviations of zero. Slope 
estimates that are constrained to be zero are omitted from the table. MIRT = multidimensional 
item response theory; ML = maximum likelihood; MCMC = Markov chain Monte Carlo. 

eter estimates.1 Going beyond that, by its nature MCMC estimation pro­
duces a description of the entire Bayesian posterior distribution for each 
parameter estimate. Slope estimates printed in italics in Table 6.6 are within 
two posterior standard deviations of zero; using a Bayesian analog of signifi­
cance testing, we may state that we are not confident that those parameters 
exceed zero. 

Edwards's (2005) implementation of MCMC estimation for restricted item factor analysis simul­
taneously estimates all ofthe parameters ofthe three-parameter normal ogive model—the slopes, 
the intercepts, and the so-called guessing or lower asymptote parameters. The FIML implementa­
tion of bifactor analysis in Testfact does not estimate the lower asymptote parameters. To make the 
comparison between the results in Table 6.6 as direct as possible, the MCMC estimates ofthe lower 
asymptote parameters were supplied as fixed values for the ML estimation. 
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C o n c l u d i n g C o m m e n t s 

Conventional IRT models assume local independence. There are many indicators 
of LD. Some are specifically designed indices, such as Yen's (1984) Q3 statistic, 
Chen and Thissen's (1997) LD indices, and some are generic statistics that can be 
used to detect LD, such as the modification indices provided by SEM software. 
Others are patterns a skilled data analyst might notice, such as a pair or triplet of 
items that appear to be more discriminating than an experienced data analyst 
might expect, and further have content in common. Models designed to parame­
terize LD may be used in situations in which the design ofthe test or scale sug­
gests a priori among which items LD may occur.2 None of these approaches are 
universally applicable, but sensitivity in data analysis can usually detect LD 
when it occurs. 

There are many solutions to LD that permit IRT analysis ofthe test or scale. 
Omission of items, redefining the item responses for use with multicategory mod­
els, and explicit models ofthe dependence are among them. 

The presence of LD implies (at some level) another factor, which leads to 
an interesting question: Is the factor to be measured or considered to be at a 
lower hierarchical level than the target trait to be measured? In some cases, 
we have considered it obvious that the LD factors are a nuisance; examples are 
the following: 

• passage factors on reading comprehension tests, 
• identification of numerals versus matching numerals, 
• "Pushing" and "Hitting," and 
• MMPI "use unfair means to gain advantage" and "lie to get ahead." 

In other cases, LD may be a clue that there is some interesting factor that 
deserves measurement but that is represented in some minority amount on the 
test or questionnaire. For example, as discussed in a previous section of this 
chapter, on the five-item PedsQL™ Social Functioning Scale, the two items 
about "do things other kids can do" and "hard to keep up with other kids" exhib­
ited LD. However, subsequent analyses have indicated that those two "per­
formance" items are negatively related to healthiness, whereas the other three 
items on "getting along with other kids" are positively related with health. 
Overall, we have indications of two factors of Social Functioning in quality of 
life and a suggestion to measure both—in this case what appeared at first to be 
LD has developed into a factor of interest. 

The quest for methods to detect or identify LD is by no means over. Future 
directions for research would certainly include the development of improved LD 
indices that can be used with larger numbers of items with multiple response 
categories (as with 5-point Likert-type scales). In addition, explicit modeling of 
LD, permitting unidimensional scoring on the target dimension with corrected 
estimates of precision, is in its relative infancy. The Bradlow, Wainer, and Wang 

2There are also procedures intended to detect multidimensionality in test items that are not based 
on latent variable or IRT models, such as those implemented in the computer software DETECT 
(Zhang & Stout, 1999a, 1999b) and DIMTEST (Nandakumar & Stout, 1993; Stout, 1987). 
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(1999) and Gibbons and Hedeker (1992) models do that, but only a range of 
models is possible. Either FIML or MCMC estimation techniques may provide a 
basis for parameter estimation and scoring with additional models. Increased 
use of IRT in the measurement of personality and health outcomes will intensify 
demand for such techniques. Neither personality measurement nor the mea­
surement of health outcomes has the inexhaustible supply of items that are a 
matter of principle in, say, the constmction of mathematics or reading compre­
hension tests. As a result, scales comprising a relatively few items must often be 
modeled and used as they are. Such scales may contain LD, and to use IRT to its 
fullest potential, that LD must be modeled and accounted for. This chapter has 
summarized some of 2 decades' efforts toward that end, but there remains work 
for the future in this aspect of model-based measurement. 
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Measuring Psychopathology With 
Nonstandard Item Response Theory 
Models: Fitting the Four-Parameter 
Model to the Minnesota Multiphasic 

Personality Inventory 

Niels G. Waller and Steven P. Reise 

Researchers working with psychopathology and personality data1 are showing 
increased interest in item response theory (IRT; Bock, 1997; Embretson & 
Reise, 2000; Hambleton & Swaminathan, 1985) for model-based psychological 
assessment (Reise, 1999; Reise & Waller, 1990; Reis & Waller, 2001; Steinberg 
& Thissen, 1995, 1996; Waller, 1999; Waller & Reise, 1989, 1992; Waller, 
Tellegen, McDonald, & Lykken, 1996). During the past 25 years the one-, two-, 
and three-parameter logistic models for binary item responses (1PLM; 2PLM; 
3PLM; Birnbaum, 1968) have dominated work in this area. More recently, 
graded response models, nonparametric item response models, and models for 
multidimensional data (Chernyshenko, Stark, Chan, Drasgow, & Williams, 
2001; Ferrando, 2004; Meijer & Baneke, 2004; Junker & Sijtsma, 2001; Santor, 
Ramsay, & Zuroff, 1994; Wang, Chen, & Cheng, 2004) have also been applied 
in this domain. 

In this chapter we discuss the application of the four-parameter logistic 
model (4PLM; Barton & Lord, 1981) to psychopathology data. The 4PLM is a 
relatively old model for binary item responses that has been largely ignored for 
the past 25 years (although see Hessen, 2004, for a four-parameter, constant 
discrimination model). An important reason for this neglect is that the original 
application of the model (Barton & Lord, 1981) to achievement and aptitude 
data produced disappointing results. Consequently, researchers came to believe 
that the inclusion of a fourth parameter—a parameter that would allow the 

Preparation of this paper was supported by the National Institutes of Health (NIH) through the 
NIH Roadmap for Medical Research Grant (AG015815) and the NIH Roadmap Initiative (P20 
RR020750). We thank Dr. Eric Loken for helpful suggestions on estimating the 4PLM via the Gibbs 
sampler. We also thank Drs. Loken and David Rindskopf for helpful suggestions that improved the 
clarity of our presentation. 
'For brevity, in the remainder of this chapter, we use the phrase psychopathology data to refer to 
both psychopathology and personality data. 
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upper asymptote of the item response function (IRF) to fall below 1.00—was 
not needed. 

Several years ago (Reise & Waller, 2003), in an article that has been cred­
ited with reviving interest in the 4PLM (Loken & Rulison, 2006), we suggested 
that the 4PLM may be uniquely suited for characterizing psychopathology 
data. In this chapter, we follow up on that idea and show how Bayesian meth­
ods using Markov chain Monte Carlo techniques (MCMC; Albert, 1992; Albert 
& Chib, 1993; Patz & Junker, 1999) can be used to fit the 4PLM to data from 
the Minnesota Multiphasic Personality Inventory-Adolescent form (MMPI-A; 
Butcher et al., 1992). The MMPI-A, with its large and heterogeneous pool of 
item content, is one of the most widely used inventories for psychopathology 
assessment (Archer & Newsom, 2000; Lees-Haley, Smith, Williams, & Dunn, 
1996; Piotrowski & Keller, 1989), and as such it represents an ideal vehicle for 
investigating the utility ofthe 4PLM with typical performance data. 

We begin the chapter with a brief review of standard IRT models for binary 
item responses. This material serves as a prelude to our discussion ofthe 4PLM. 
Next, we summarize previous attempts to apply IRT to MMPI data and then 
describe the MMPI-A Low Self-Esteem (LSE) scale (first described in Reise & 
Waller, 2003) that we use in our illustrations. Using data from 14,843 adoles­
cent boys who completed the LSE while taking the MMPI-A, we next show how 
nonparametric item response functions can provide suggestive evidence that 
the 4PLM is needed to characterize psychopathology data. Finally, using a sub­
set of these data, we fit the 4PLM to the LSE scale using MCMC simulations 
(Albert, 1992; Albert & Chib, 1993; Patz & Junker, 1999). We conclude the 
chapter by offering some tentative ideas about the interpretation of IRT item 
parameters in psychopathology data. 

Standard Item Response Models for Binary Items 

Most readers of this book will be familiar with the models that are described 
in this section: the one-, two-, and three-parameter logistic models for binary 
item responses. Persons desiring more information can consult one or more of 
the excellent introductions to IRT that are available (Embretson & Reise, 
2000; Hambleton & Swaminathan, 1985; Hambleton, Swaminathan, & Rogers, 
1991; van der Linden & Hambleton, 1997). In this section our modest goal is to 
briefly review these models to set the stage for our later discussion ofthe 4PLM. 

All models in this chapter assume that a single latent trait underlies per­
formance differences on a psychological scale. Following tradition, we use 8; 
to denote the latent trait value for individual i. The one-, two-, and three-
parameter logistic models include one-, two-, or three-item parameters to char­
acterize the nonlinear regression of an item response (u) on 8. This nonlinear 
regression function is called an Item Response Function (IRF). IRFs for the 
three models can be written as follows: 

IPLM P ( u , = i | e ; A > - _ i ^ (i) 
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3PLM 

(2) 2PLM P i u ^ l K a j t j ^ j ^ j f c i l ) 

P(u i j=l\Q l ,aj,b J ,Cj) = c j + ( l - C j ) ^ — ^ - ^ - ) (3) 

The one-parameter model (Rasch, 1960) has one item parameter, bj, that 
reflects item difficulty in achievement data or item (symptom) extremity in psy­
chopathology data. As formalized in Equation 1, the IPLM characterizes the 
probability of an endorsed response (u) by individual i on item j by a logistic 
function (with D = 1.702 to place the item parameters on the normal ogive met­
ric) ofthe difference between 8; and bj. As illustrated in Panel A of Figure 7.1, 
the IRFs from the IPLM have several unique features. Foremost among these 
are that the IRFs do not cross and each IRF has a lower and upper asymptote 
of 0 and 1.00, respectively. 

The 2PLM (Birnbaum, 1968) adds a second-item parameter that is pro­
portional to the slope of the IRF when 8; = bj. This so-called discrimination 
parameter, a,, characterizes the degree to which an item discriminates among 
contiguous latent trait scores. As such, a, is related to a factor loading when an 
item-level factor analysis is based on a matrix of tetrachoric correlations 
(Takane & DeLeeuw, 1987). Panel B of Figure 7.1 displays example IRFs from 
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the 2PLM. Although not apparent in the figure, these IRFs—like all IRFs in 
the 2PLM—have lower and upper asymptotes of 0 and 1.00. In contrast to the 
IPLM, the IRFs in the 2PLM can (and frequently do) cross. This seemingly 
minor difference between the models has engendered considerable controversy 
in the psychometrics community over the scale properties of IRT trait scores 
(for opposing views, see Borsboom & Mellenberg, 2004; Michell, 2004; Perline, 
Wright, & Wainer, 1979). 

The 3PLM2 builds on the previous models by allowing the lower asymptote 
of an IRF to occur at values other than 0.0. This is accomplished by including a 
third item parameter, c,. In aptitude and achievement testing, c, is often called the 
pseudo-guessing parameter because it allows an IRF to reflect the possibility that 
on some tests (e.g., multiple choice achievement tests), individuals with infi­
nitely low trait scores can obtain correct responses by chance. In psychopathol­
ogy data, this interpretation is not feasible because guessing is presumed not to 
occur. Some researchers suggest that c,- may capture social desirability respond­
ing (Roskam, 1985; Rouse, Finger, & Butcher, 1999; Zumbo, Pope, Watson, & 
Hubley, 1997); however, in a previous publication (Reise & Waller, 2003), we 
showed that that interpretation is not viable. 

Panel C in Figure 7.1 illustrates IRFs from the 3PLM. Notice in this figure 
that the IRFs in this model can differ in slope (item discrimination), location 
(item extremity), and lower asymptote. 

M o d e l i n g M M P I D a t a Wi th IRT 

Earlier we suggested that the MMPI inventories provide an ideal vehicle for 
studying the application of IRT to psychopathology data. We also noted that in 
its various forms the MMPI is one ofthe most widely administered psychologi­
cal tests (Archer & Newsom, 2000). Given the popularity of these inventories, 
it is not surprising that researchers have applied IRT models to various MMPI 
scales (Carter & Wilkinson, 1984; Childs, Dahlstrom, Kemp, & Panter, 2000; 
Panter, Swygert, Dahlstrom, & Tanaka, 1997; Reise & Waller, 2003; Rouse, 
Finger, & Butcher, 1999; Waller, Thompson, & Wenk, 1998). Much of this liter­
ature is summarized in Waller (1999). 

In Reise and Waller (2003), we fit multiple IRT models to MMPI-A data 
and concluded that the standard (IPLM, 2PLM, and 3PLM) models fail to accu­
rately characterize the functional relations between the item responses and the 
underlying trait scores. Specifically, our findings suggested that the IRFs of 
psychopathology data should allow upper asymptotes to be less than 1.00. The 
4PLM, which is displayed in Equation 4 and illustrated in the final panel of 
Figure 7.1, provides a fourth parameter, dj, that allows variation in the upper 
asymptotes ofthe IRF. 

4PLM PK- = 118,,aj,bj,Cj) = Cj + (dj - cj) 1 + e_t j ( , i .b j ) (4) 

technically the 3PLM is not a logistic model because the item response function is not a member 
ofthe logistic family. 
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For readers who have not seen our earlier report (Reise & Waller, 2003), 
we briefly review the findings that encouraged us to explore the 4PLM with 
psychopathology data. In retrospect, our analyses were deceptively simple. 
Using one-dimensional factor scales from the MMPI-A, we fit the 3PLM to each 
scale twice. First, we estimated item parameters after keying the scales to 
measure psychopathology constructs (i.e., in which higher scores represent 
increasing levels of maladaptive behavior and cognitions). We called this 3PLM 
scoring. We then repeated our analyses after reverse scoring each scale. We 
called this 3PLMR scoring. To our surprise, we found support for the three-
parameter model in both sets of analyses. In other words, on each scale we 
found evidence for nonzero lower asymptotes regardless ofthe direction of scale 
keying. This finding suggested that the 4PLM would be more appropriate for 
these data. 

Unfortunately, in our earlier work we did not fit the 4PLM to the MMPI-A 
factor scales. At the time we were unaware of software that could estimate the 
parameters of this model. We suspect that the 4PLM was not included in com­
mercial IRT programs (e.g., Assessment Systems Corporation, 1997; Zimowski, 
Muraki, Mislevy, & Bock, 1996) because early applications of the model pro­
duced disappointing findings (Barton & Lord, 1981). At this point it may be 
instructive to review those findings and their subsequent interpretation by the 
IRT community. 

In their original report, Barton and Lord (1981) noted the following: 

Even a high-ability student may make a clerical error in answering an easy 
item. The introduction of an upper asymptote with a value of slightly less 
than litalics added] 1 should allow a high-ability student to miss an easy 
item without having his ability estimate drastically lowered, (p. 2) 

To test this conjecture, the authors compared the relative performance of the 
three- and four-parameter models on several data sets collected by Educational 
Testing Service (i.e., SAT Verbal, SAT Math, GRE Verbal, and AP Calculus). 
Reviewing their findings, Barton and Lord (1982) concluded the following: 

In view of the failure of the four-parameter model either to consistently 
improve the likelihood or to significantly change any ability estimates there 
is no compelling reason to urge the use of this model. The extra computa­
tional time required for the more complex derivatives further argues against 
its use. (p. 6) 

This opinion was echoed by Hambleton and Swaminathan (1985), who 
noted in their influential textbook that the "[4PLM] may be of theoretical inter­
est only because Barton and Lord (1981) were unable to find any practical gains 
that accrued from the model's use" (pp. 48-49). 

Unfortunately, Barton and Lord's negative findings, and the subsequent 
dissemination of those findings by later textbook authors, effectively stymied 
research on the 4PLM for a quarter century. Only recently has research on the 
4PLM been revived (Linacre, 2004; Loken & Rulison, 2006; Reise & Waller, 
2003; Rupp, 2003). It is also unfortunate that in early accounts of this work 
(e.g., Hambleton & Swaminathan, 1985, pp. 48-49), many authors failed to 
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mention that Barton and Lord never actually estimated the parameters ofthe 
4PLM. Rather, the upper asymptotes in Barton and Lord's study were uniformly 
constrained to values of 1.00 (representing the 3PLM), 0.99, or 0.98. We suspect 
that the original authors encountered difficulties when estimating a fourth 
parameter; in our own labs we were unable to accurately recover the fourth 
parameter using traditional likelihood methods (e.g., joint maximum likelihood). 
Our experiences, of course, are not surprising given the well-known difficulty of 
recovering the third parameter ofthe 3PLM (Yen, Burket, & Sykes, 1991). 

F i t t i n g t h e 3PLM a n d 3PLMR t o t h e MMPI-A LSE Scale 

In this section, we focus on the psychometric properties of a single MMPI-A 
scale to more rigorously evaluate the fit of the 4PLM to psychopathology data. 
To illustrate the 4PLM we chose the 23-item, LSE scale that was first described 
in Reise and Waller (2003). As noted in our earlier publication, the LSE was 
derived from factor analyses of tetrachoric correlations (separately) computed 
on samples of 19,326 adolescent boys and 13,577 adolescent girls. All MMPI-A 
protocols were completed in one of the following settings: outpatient mental 
health (N= 14,843), inpatient mental health (iV= 1,440), correctional facilities 
(N = 1,001), drug/alcohol treatment centers (N = 159), or medical centers (N = 
219); all protocols were screened with multiple validity criteria.3 Given the 
diversity ofthe samples, we are relatively confident that the data are represen­
tative of the universe of MMPI-A protocols that are obtained in psychopathol­
ogy research. 

In the analyses reported in this chapter, we selected a random sample of 
5,000 adolescent boys who completed the LSE in an outpatient mental health 
setting. We focus on a single setting and a single gender to minimize the effects 
of differential item functioning. Prior to exploring the fit of the 4PLM to these 
data, we replicated the analyses (focusing on this data set) that were reported 
in Reise and Waller (2003). Specifically, we fit the 3PLM and 3PLMR to the 
LSE item responses using marginal maximum likelihood estimation as imple­
mented in BILOG-MG (Zimowski et al., 1996). In both analyses, we used 41 
quadrature points for the theta distribution, a convergence criterion of .0001 
for the expectation-maximization (EM) algorithm, and a .10 start value for the 
lower asymptote parameter. The item parameter estimates from these analy­
ses are reported in Table 7.1. 

The findings in Table 7.1 provide alternative and seemingly incompatible 
views ofthe psychometric properties ofthe LSE. At face value, the 3PLM esti­
mates suggest that most items are well characterized by a two-parameter 
model because virtually all of thee parameters are near 0.0. However, the item-
level chi-square statistics raise red flags and indicate that all but one item 
(Item 16) are poorly modeled by the 3PLM. It is interesting that many of these 
items also have large and significant dj in the 3PLMR results. 

Protocols were deemed invalid and thus excluded from the analyses if F2 > 18, VRIN > 11, TRIN 
> 13 or TRIN < 6 for adolescent girls and F2 > 20, VRIN > 13, TRIN > 13, TRIN < 5 for adolescent 
boys. We thank the University of Minnesota Press for kindly providing us with these data. 
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Table 7.1. Item Content and IRT Parameter Estimates for the MMPI-A Low 
Self-Esteem Factor Scale 

Abbreviated item content 

1. Unwillingly did bad things 
because of friends. 

2. Friends convince me to do wrong. 
3. People can easily change my mind. 
4. Avoid doing things because others 

feel I'm not doing them right. 
5. Leave handling of problems to other 

people. 
6. Often regret things. 
7. Don't do something if others don't 

think its' worth it. 
8. Lie to get by. 
9. My sins should be punished. 

10. Want to give up when things aren't 
going well. 

11. Feel helpless when facing important 
decisions. 

12. Action dictated by others. 
13. Even short trips make me nervous. 
14. Jealous of some family members. 
15. Often cross street to avoid people. 
16. My sins are unforgivable. 
17. Others' success makes me feel 

a failure. 
18. Am important. 
19. Bothered when nice things are said 

about me. 
20. Can't do anything well. 
21. Give up trying to do things because 

of lack of confidence. 
22. Wholly self-confident. 
23. Expect to succeed. (False) 

a 

.58 

.65 

.75 

.68 

.73 

.64 

.56 

.68 

.48 
1.02 

1.05 

.48 

.55 

.70 

.64 

.65 
1.05 

.60 

.71 

.93 

.99 

.46 

.58 

3PLM 

b 

.97 

1.12 
.90 
.91 

.80 

-.18 
.22 

.59 
1.70 
.38 

.65 

.61 
1.87 
1.23 
1.05 
1.74 
.75 

1.52 
1.77 

1.84 
.39 

.24 
1.85 

C1 

.02 

.01 

.01 

.02 

.03 

.03 

.04 

.02 

.03 

.01 

.01 

.02 

.01 

.04 

.02 

.03 

.01 

.03 

.01 

.00 

.01 

.09 

.02 

a 

1.01 

1.31 
1.07 
.77 

.72 

.85 

.74 

.86 

.46 
1.16 

1.12 

1.05 
.71 
.61 
.75 
.56 

1.16 

.54 

.68 

1.01 
1.04 

.44 

.56 

3PLMR 

b 

.15 

.04 
-.10 
-.41 

-.55 

.55 

.40 

-.05 
-1.23 

-.18 

-.46 

.56 
-.74 

-1.03 
-.49 

-1.60 
-.54 

-1.34 
-1.65 

-1.61 
-.24 

.22 
-1.66 

c" 

.40 

.46 

.32 

.21 

.09 

.13 

.20 

.21 

.16 

.09 

.09 

.38 

.43 

.08 

.23 

.09 
.12 

.06 

.08 

.16 

.06 

.05 

.08 

Note. IRT = item response theory; MMPI-A = Minnesota Multiphasic Personality 
Inventory-Adolescent form; PLM = parameter logistic model; 3PLM = three-parameter IRT 
model when items are keyed in the psychopathology direction; 3PLMR = three-parameter IRT 
model when items are reverse keyed. Using ap < .01 significance level, item level chi-square 
goodness-of-fit tests indicated that only Item 16 could be adequately modeled by the 3PLM. 
"c parameter estimates marked in boldface are significantly different from 0.0. 

In contrast to the 3PLM findings, the results ofthe 3PLMR analysis pro­
vide cogent evidence for including a lower asymptote parameter in the model. 
For instance, relying on the BILOG goodness-of fit index, 57% ofthe items had 
lower asymptote estimates that were significantly higher than 0. Considered in 
aggregate, these findings clearly demonstrate that neither the 2PLM nor the 
3PLM is appropriate when the LSE is scored as a psychopathology measure 
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(i.e., when higher scores indicate extreme levels of low self-esteem). For some 
readers they may also suggest that self-esteem, like IQ, has a natural direction 
of keying. That is, self-esteem scales—or at least the LSE—should be keyed to 
measure high self-esteem. Although the notion of unipolar constmcts is plausi­
ble, it is clearly not the solution to this psychometric conundrum. In some con­
texts it may be appropriate to measure high self-esteem (e.g., when selecting 
CEOs of major corporations), whereas in other scenarios it may be more appro­
priate to measure low self-esteem (e.g., when identifying troubled youth). To 
allow both possibilities, therefore, we suggest that a better solution is to find a 
model that fits the data regardless of which pole on the scale is of greater interest. 

We used two methods to explore additional models that do not constrain 
the asymptotes ofthe item-trait regression functions to occur at 0.0 and 1.00. 
We believe that the methods complement one another because the first esti­
mates the IRF using a nonparametric method and the second method using a 
parametric function. The nonparametric method is based on rest score plots 
(Junker & Sijtsma, 2000); for the parametric method, we fit the 4PLM to the 
data using a Gibbs sampling technique (Albert, 1992; Albert & Chib, 1993; 
Baker, 1998; Casella & George, 1992). The results from these analyses are 
reported in the following sections. 

Using Rest-Score Regressions to Explore IRFs 

Rest score plots (Junker & Sijtsma, 2000) offer a convenient and informative 
technique for exploring the general form of an empirical item response function 
(ERF). A rest score is simply a total score in which an item under consideration 
has been deleted. In simple terms, rest score plots display conditional item 
response probabilities when the probabilities have been conditioned on rest 
scores (see Lord, 1980, pp. 18-19). When generated from large AT data sets, 
such ERFs provide information about the function asymptotes. It is important 
that they can also reveal violations of the monotonicity assumption of logistic 
IRT models. 

Using data from the 14,843 adolescent boys who completed the LSE in an 
outpatient mental health setting, we created 23 rest score plots for the LSE 
items. For each item, rest scores were calculated and then divided into 10 
equally spaced intervals. For each interval, we calculated item endorsement 
probabilities and the associated 95% confidence bounds. These conditional 
probabilities and confidence bounds were then connected by linear interpola­
tion to produce the ERFs. 

Unfortunately, due to space limitations, we are unable to reproduce all 23 
rest score plots (copies of the plots are available upon request). Nevertheless, 
several features of these plots warrant comment. For instance, for 22 ofthe 23 
LSE items, the plots revealed that the ERFs were monotonically increasing. 
The exception to this trend occurred for Item 13, which revealed a monotonic­
ity violation in the last interval. Moreover, in several plots the upper asymp­
totes ofthe nonparametric functions were less than 1.00. Across the scale, this 
was true for 14 of 23 (61%) items. Two items illustrating this feature are repre­
sented in Panels A and B in Figure 7.2. Panel A shows the ERF for Item 1. In 



MEASURING PSYCHOPATHOLOGY 155 

A. (Item 1) Unwillingly did bad things 
because of friends. 

a (Item 12) Action dictated by others. 
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C. (Item 22) Wholly self-confident. (False) 

l l l l l — I I I I 
(-0.022,2.18] (8.8,11] (15.4,17.6] 

Rest Scores 

D. (Item 21) Give up trying to do things 
because of lack of confidence. 

l l l l l — l l l l l 
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Rest Scores 

F i g u r e 7.2. Four empirical item response functions from the Minnesota Multiphasic 
Personality Inventory-Adolescent Low Self-Esteem Factor Scale. 

abbreviated form4 Item 1 reads "Unwillingly did bad things because of friends." 
Apparently, if the implications of this ERF are to be believed, many adolescent 
boys with low self-esteem (i.e., high LSE scores) will not act out in the face of 
peer pressure. The ERF for Item 12 paints a similar picture. Thus, there appears 
to be a distinct class of boys who will refrain from acting out regardless of their 
level of low self-esteem. IRT mixture modeling (Mislevy & Verhelst, 1990) could 
be used to test this conjecture. 

The remaining plots in Figure 7.2 suggest that some items ofthe scale will 
fit a three-parameter model (e.g., Item 22), whereas for other items (e.g., Item 21) 
the 2PLM will suffice. The rest score plot for Item 22 is particularly interesting 

"The University of Minnesota Press, copyright holder for the MMPI-A, does not allow publication 
ofthe unabbreviated items. 



156 WALLER AND REISE 

from a clinical standpoint because it suggests that only 1 out of 4 boys (in the 
current sample) with high self-esteem admits that they are not wholly self-
confident. Stated differently, 75% ofthe boys in our sample with the highest self-
esteem scores claimed that they are wholly self-confident. This finding intrigues 
us because all persons in this sample were receiving outpatient mental health 
services at the time they completed the MMPI-A. Moreover, clinical experience 
suggests that individuals who claim to be entirely self-confident are usually 
narcissistic and self-defensive. 

The results from these analyses are in accord with those reported in the pre­
vious section. As such, they provide further evidence that a four-parameter model 
is needed to accurately characterize item response behavior on scales such as the 
MMPI-A LSE. Later we describe how researchers can estimate the parameters of 
the 4PLM using general purpose (and freely available) software for Bayesian esti­
mation (Speigelhalter, Thomas, & Best, 2000). Before doing so, we briefly review 
the so-called Bayesian revolution in statistical computing and discuss why 
Bayesian methods have begun to dominate contemporary research in IRT. 

The Bayesian Revolution in Statistical Computing 

During the past 15 years, a not-so-quiet revolution has occurred in the field of 
statistical computing. This so-called Bayesian revolution has literally trans­
formed the computational landscape of applied statistics (Beaumont & Rannala, 
2004; for a review, see Gelman, Carlin, Stern, & Rubin, 2004). Models that 
were deemed too complex only a decade ago are now routinely estimated via 
Bayesian methods that rely on Monte Carlo simulations and cheap computer 
hardware. It would be impossible for us to overstate the importance of these 
developments. Rupp, Dey, and Zumbo (2004) nicely summarized the situation 
as follows: 

Bayesian methods have become a viable alternative to traditional maximum 
likelihood-based estimation techniques and may be the only solution for 
more complex psychometric structures. Hence, neither the applied nor the 
theoretical measurement community can afford to neglect the exciting new 
possibilities that have opened up on the psychometric horizon, (p. 424) 

Although there have been many calls to arms (Edwards, Lindman, & 
Savage, 1963; Novick & Jackson, 1974; Phillips, 1974; Rouanet, 1996), in gen­
eral, psychologists have been slow to join the Bayesian revolution. It is interest­
ing that psychometricians are a notable exception to this rule. This is especially 
true for psychometricians who work with IRT. 

In the 1980s several researchers described how Bayesian methods could 
be incorporated into IRT parameter estimation techniques (Swaminathan & 
Gifford, 1982,1985,1986; Tsutakawa & Lin, 1986) to control parameter drift 
and to improve estimation accuracy in small to moderate sample sizes. 
Nevertheless, the full power of Bayesian computation for IRT parameter esti­
mation was not realized until the 1990s (Albert, 1992; Albert & Chib, 1993; 
Baker, 1998; Beguin & Glas, 2001; Fox & Glas, 2001; Johnson & Albert, 1999; 
Kim, 2001; Patz & Junker, 1999). The primary innovation during this period 
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was the demonstration that IRT parameters could be estimated via MCMC 
simulations and the Gibbs sampler. 

IRT P a r a m e t e r E s t i m a t i o n Via t h e Gibbs S a m p l e r 

The Gibbs sampler is the workhorse of modern Bayesian computing. Introduced 
to the statistics community by Gelfand and Smith (1990; for an earlier description 
ofthe technique, see Geman & Geman, 1984), the Gibbs sampler is a member 
of the so-called Metropolis-Hastings family of algorithms (Hastings, 1970; 
Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) that were invented 
during the development ofthe atomic bomb. Casella and George (1992) have 
written a very readable introduction to the Gibbs sampler (see also Congdon, 
2001; Gill, 2002; Jackman, 2000, 2004). 

In nontechnical terms, the Gibbs sampler simulates a high-dimensional 
joint distribution of parameter estimates by breaking the problem down into 
mutually exclusive sets of low-dimensional—read: "easier to simulate"— 
conditional distributions. This idea is particularly useful in IRT research 
because IRT models often contain a large number of item and person parame­
ters. For instance, a P-parameter IRT model with K items that is fit to data 
from N individuals will necessitate the estimation (P x K) + N parameters. In 
the example that follows, this translates into 5,092 parameters. 

The Gibbs sampler avoids the Herculean task of locating the peak of the 
likelihood surface in high-dimensional space by taking a radically different 
approach. Namely, rather than maximize a likelihood function (by setting partial 
derivatives to zero and then solving), the Gibbs sampler draws simulated values 
(i.e., estimates) from low-dimensional conditional distributions. The basic idea is 
to replace complex mathematical analyses with Monte Carlo simulations. If the 
simulated values are drawn from the appropriate distributions, then in the long 
mn the aggregate values will also define the joint, posterior distribution for the 
parameters. This latter distribution can then be used to calculate the marginal 
density for a single parameter or for a combination of multiple parameters. Albert 
(1992) and Baker (1998) have written informative tutorials of these ideas in the 
context of IRT. Although the mathematics in these tutorials is not complex, we 
suspect that implementing these ideas into a workable computer program may 
present a daunting task for many applied IRT researchers. 

Fortunately, it is now possible to estimate IRT models via a Gibbs sampler 
using general purpose Bayesian engines, such as BUGS (Gilks, Richardson, & 
Spiegelhalter, 1995), which are both freely available and easily programmed.5 

Several of these engines are included in the R (R Development Core Team, 
2006) computing environment (Martin & Quinn, 2006; Thomas, 2006). 

In the current study we estimated the 4PLM using a Gibbs sampler as 
implemented in BRUGS (Thomas, 2006). BRUGS is an open source R package 
that is based on the OpenBUGS (http://mathstat.helsinki.fi/openbugs/) archi­
tecture. Estimation of the model is straightforward in BRUGS and requires 
little more than the definition of the 4PLM IRF (see Equation 4, supra), the 

5We thank Eric Loken for initial help with the BUGS model. 

http://mathstat.helsinki.fi/openbugs/
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specification of prior distributions for the model parameters, and code that 
defines the likelihood function. In our analyses the prior distributions for the 
item parameters (a, b, c, d) and the latent subject parameter (0) were defined 
as follows: a, - Log - normal(0, 1/11), bj ~ Normal(0, 1.5), c, ~ Beta(2, 10), dj ~ 
BetadO, 2), and 8i~Normal(0, 1). 

Unfortunately, hardware limitations prohibited us from analyzing the full 
set of 14,843 response vectors in the male adolescent outpatient sample. To get 
around these limitations, the analyses were run on a random sample of 5,000 
protocols from the larger data set. Program code was written to execute two 
chains ofthe Gibbs sampler with 30,000 burn-in draws (i.e., Monte Carlo sim­
ulations) followed by an additional 30,000 draws. Although these numbers may 
appear excessive, previous work in our labs suggested that they are conserva­
tive and that smaller numbers may fail to recover the item parameters with 
sufficient accuracy. During the simulations, we monitored convergence of the 
Markov chains with the Gelman and Rubin (1992; Brooks & Gelman, 1998) 

diagnostic, V-R (for a readable discussion of this index, see Gill, 2002, pp. 399-

401). In their original report, the authors stated that vR values near 1.00 sug­
gest that the Markov chains have converged to their stationary distributions. 
In a later publication, Gelman (1996) amended this recommendation and sug­
gested that values less than 1.1 or 1.2 may be adequate for many models. 

In the current study the median VJR for the item parameters was 1.002 
with minimum and maximum values of 1.00 and 1.03, respectively. Although 
these findings are promising, prior work in our lab suggested that Gelman and 
Rubin's (1992) diagnostics are insufficient arbiters of model-data fit with the 

four-parameter model. For instance, v R values close to 1.00 can be paired with 
parameter estimates that are clearly outside ofthe parameter space (e.g., item 
discrimination values that are greater than 3.00 in the normal metric). We 
therefore judged the fit of the 4PLM by additional criteria as described in the 
following section. 

The fully Bayesian approach that was implemented in this study yields 
posterior distributions for all model parameters. These distributions can be 
summarized by various point estimates or intervals (e.g., means, medians, 
modes, regions of highest density). To keep matters simple, in Table 7.2 we 
report the means of the marginal distributions for the item parameters of the 
LSE scale. Notice in this table that the dj estimates are uniformly less than 
1.00. Moreover, as judged by the 97.5 quantiles ofthe posterior distributions, 
we can be highly confident (or as a Bayesian would say: "It is highly probable") 
that many ofthe values are significantly less than 1.00. 

The previously mentioned rest score plots provide additional support for 
the notion that the 4PLM is an adequate model for our psychopathology data. 
In these plots, with few exceptions, the predicted and observed response pro­
portions were highly similar. The worst discrepancy occurred at the low end of 
Item 9, an item with one ofthe lowest estimated d values. The low d value, in 
turn, is likely due to the ambiguity of the item "My sins should be punished." 
Individuals who do not believe in God and/or the Christian notion of sin may 
not know how to respond to this item. We can imagine individuals with ele-
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Table 7.2. Item Parameters (4-Parameter Model) for the Adolescent Low 
Self-Esteem Factor Scale 

Abbreviated item content a b c d 

1. Unwillingly did bad things because of friends. 
2. Friends convince me to do wrong. 
3. People can easily change my mind. 
4. Avoid doing things because others feel 

I'm not doing them right. 
5. Leave handling of problems to other people. 
6. Often regret things. 
7. Don't do something if others don't think its' 

worth it. 
8. Lie to get by. 
9. My sins should be punished. 

10. Want to give up when things aren't going well. 
11. Feel helpless when facing important 

decisions. 
12. Action dictated by others. 
13. Even short trips make me nervous. 
14. Jealous of some family members. 
15. Often cross street to avoid people. 
16. My sins are unforgivable. 
17. Others' success makes me feel a failure. 
18. Am important. 
19. Bothered when nice things are said about me. 
20. Can't do anything well. 
21. Give up trying to do things because of lack 

of confidence. 
22. Wholly self-confident. (False) 
23. Expect to succeed. (False) 

1.91 -0.28 0.04 0.52 (.56) 
1.95 -0.16 0.02 0.48 (.53) 
1.50 0.05 0.02 0.60 (.66) 
1.12 0.06 0.02 0.63 (.72) 

0.89 0.45 0.04 0.82 (.94) 
1.08 -0.50 0.06 0.83 (.88) 
1.16 -0.47 0.07 0.71 (.77) 

1.10 0.01 0.04 0.73 (.79) 
0.78 0.45 0.05 0.57 (.73) 
1.23 0.19 0.01 0.90 (.96) 
1.34 0.41 0.02 0.85 (.93) 

1.54 
1.16 
0.84 
1.13 
0.79 
1.27 
0.94 
0.84 
1.14 
1.10 

0.72 
0.88 

-0.48 
0.18 
0.72 
0.15 
1.19 
0.48 
1.37 
1.44 
1.52 
0.25 

0.53 
1.56 

0.06 
0.02 
0.04 
0.03 
0.04 
0.01 
0.09 
0.02 
0.00 
0.02 

0.24 
0.06 

0.59 (.63) 
0.40 (.49) 
0.75 (.91) 
0.61 (.71) 
0.73 (.94) 
0.84 (.93) 
0.94 (.99) 
0.82 (.97) 
0.82 (.97) 
0.93 (.98) 

0.95 (.99) 
0.91 (.99) 

Note. Numbers in parentheses are the 97.5 quantiles ofthe posterior distributions. 

vated low self-esteem scores who respond False to Item 9 simply because they 
do not acknowledge a religious contribution to deviant behavior. 

To avoid any ambiguity in our own beliefs, we wish to state emphatically 
that we do not believe that item ambiguity is a general cause of low d values. 
Other findings in Table 7.2 make that interpretation unsupportable. For 
instance, 8 of 23 items (Items 1 ,2 ,3 ,4 ,9 ,12 ,13 ,15) on the LSE scale had d val­
ues that were significantly less than .75 (as judged by the 97.5 quantiles ofthe 
posterior distributions), and 3 items (Items 1, 2, & 13) had d values that were 
significantly less than .60. Nevertheless, most of these items are stated in sim­
ple and clear language. 

H a v e We F o u n d a Difference T h a t M a k e s a Difference? 

In this section we consider the important question of whether the added com­
plexity ofthe 4PLM offers an appreciable difference that makes a difference in 
the psychometric assessment of low self-esteem. Stated more objectively, we 
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ask: Using our data, would the 3PLM have yielded practically significant dif­
ferences? 

The LSE scale is an MMPI-A factor scale that was designed to identify per­
sons with extreme levels of low self-worth. As a clinical scale, we must consider 
the consequences of model choice for an individual's diagnostic score. Two ways 
to do this are to consider the (a) individual trait estimates and (b) the standard 
errors of those estimates. 

We begin by considering the effects of model choice on the estimated trait 
values. Figure 7.3 shows a scatter plot ofthe LSE trait estimates for the three-
and four-parameter models. The embedded plot in Figure 7.3 focuses on the 
scores that are greater than 1.00 in the 4PLM scoring. Notice that across the 
entire range of scores it makes little difference whether a person is scored using 
the 3PLM or 4PLM: the scores yield highly similar rankings (Spearman's p = 
.99; Pearson's r = .89). However, enlarging our focus on the smaller plot reveals 
that model choice makes a substantial difference for persons with extreme trait 
values. The rank order correlation between the scores in the embedded figure 
is only .45. Moreover, in the smaller plot the 3PLM estimates are generally 
lower than the 4PLM estimates. Thus, by using the 3PLM with these data a 
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Figure 7.3. Comparison of estimated trait scores in the three- and four-parameter 
logistic models (PLM). 
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person mns the risks of underreporting psychopathology for persons of great­
est interest to practitioners. 

Of course, realizing that the two models yield different trait estimates is 
only partially interesting unless we understand the causes of those differences. 
Two of those causes can be gleaned from scatter plots of the item discrimina­
tions and item difficulty values from the two models. These plots are shown in 
Figure 7.4. Even a cursory glance at the plots shows that relative to the 4PLM 
(a) the estimated item discriminations are smaller in the 3PLM and (b) the esti­
mated item difficulties are larger. 

A moment's reflection reveals the logic behind these trends. Consider a 
three-parameter IRF of a relatively difficult item with poor discrimination. 
Such an item will not reach its upper asymptote of 1.0 in the range of trait val­
ues that are typically encountered in practice (-4 <§ < 4). By implication, the 
3PLM must attenuate the item discriminations and inflate the item difficulties 
to accommodate an IRF from the four-parameter model that has an upper 
asymptote well below 1.00. 

Turning now to the question of score fidelity, we consider how the previous 
results affect the precision ofthe estimated trait values. In IRT models score pre­
cision is typically indexed by a function of the item parameters known as the 
expected Test Information Function (TIF; Bradlow, 1996). For the LSE scale, 
TIFs for the 3PLM and 4PLM are shown in Figure 7.5. Notice in this figure that 
relative to the 4PLM results, the TIF from the 3PLM (denoted by the dashed line 
in the figure) provides an overly optimistic assessment of score fidelity for high-
scoring individuals. In other words, relative to the 4PLM, the confidence bands 
for elevated trait estimates would be too small using the 3PLM item parameters. 
Score fidelity is reported in two metrics in the figure. The left-hand ordinate of 
Figure 7.6 reports the expected test information using Fisher's information func­
tion. The right-hand ordinate reports the conditional score reliability in the (0,1) 
range of many familiar reliability coefficients from classical test theory. 

Using either metric for the LSE data, the test information in the 4PLM is 
highly peaked and centered along trait scores that are considerably lower than 
those of greatest interest to clinicians. The 3PLM findings, on the other hand, 
suggest that trait precision is relatively high in the clinically significant range. 
These contradictory findings highlight yet another noteworthy difference 
between the results ofthe three- and four-parameter models with our data. It 
is important that researchers who were guided by these findings to lengthen 
the LSE would be drawn to items with very different psychometric properties 
depending upon the model from which they were working. 

The TIFs that are displayed in Figure 7.5 were created with the 3PLM and 
4PLM results that were reported in Tables 7.1 and 7.2, respectively. As noted 
previously, the findings in Table 7.2 are simply the means of the 30,000 esti­
mates from the posterior distributions of each parameter. A particularly attrac­
tive feature ofthe fully Bayesian approach to IRT parameter estimation is that 
the parameter estimates from the posterior distributions are easily combined 
to produce confidence bands (or probability bands) for various functions of 
interest to IRT researchers. Two sets of functions for which confidence bands 
may be particularly informative are IRFs (Thissen & Wainer, 1990) and TIFs. 

Figure 7.6 displays 90% probability bands for the 4PLM test information 
function that was previously displayed in Figure 7.5. The upper and lower limits 
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Figure 7.4. A comparison of Low-Self Esteem parameter estimates for the three- and 
four-parameter logistic models. 
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Figure 7.5. Test information functions for the Low Self-Esteem Factor Scale using the 
three- and four-parameter logistic models. 

of these bands were computed by taking the 5th and 95th ranked values ofthe 
TIF posterior distribution at regular intervals along the trait range. We contend 
that these bands tell an important story and that IRT researchers would be well-
advised to compute TIF probability bands when assessing the psychometric 
properties of a test. Notice that with the LSE, the meta-reliability—or the relia­
bility ofthe reliability estimates—differs across the trait range. At the extremes 
ofthe 8 range the confidence bands hug the mean TIF values, whereas in the 
middle ofthe trait range the bands are more widely spread apart. This indicates 
that we can be relatively confident that persons with extreme (estimated) trait 
scores, at either end ofthe scale, are poorly measured with the LSE scale. 

D i scuss ion 

IRT models are increasingly being used to solve measurement problems in con­
tent areas beyond aptitude and achievement testing. Underlying this trend is 
the belief that IRT offers practical advantages over classical test theory 
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F i g u r e 7.6. Bayesian confidence bands for the test information function: Minnesota 
Multiphasic Personality Inventory-Adolescent Low Self-Esteem Scale. 

(Embretson, 1996). Summarizing these advantages, Reise, Ainsworth, and 
Haviland (2005, p. 100) recently noted that IRT (a) provides rigorous methods 
for testing differential item and test functioning in group comparisons; (b) can 
be used to place individuals from different groups onto a common measurement 
scale, even when the groups have responded to nonoverlapping item pools; 
(c) yields test scores with desirable psychometric properties that are well suited 
for measuring individual change or growth; and (d) provides a methodology for 
developing individual tailored tests via computerized adaptive testing (Wainer 
1990) for more efficient assessment of individual differences. Of course, these 
desiderata are realized only when IRT models characterize a data set. 

In this chapter (cf. Reise & Waller, 2003) we argued that the 4PLM may be 
needed to characterize psychopathology data, and we illustrated how the Gibbs 
sampler (Casella & George, 1992) can be used to estimate the parameters ofthe 
4PLM. Specifically, we used a variant of the OpenBUGS computer program 
(Thomas, 2006) to estimate 4PLM item and person parameters on data from 
5,000 adolescent boys who completed the MMPI-A LSE scale in an outpatient 
mental health setting. 
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Our original interest in the 4PLM can be traced to earlier work (Reise & 
Waller, 2003) in which we compared the relative fit of several IRT models with 
15 factor analytically derived scales from the MMPI-A (Butcher et al., 1992). 
That work was motivated by other studies (e.g., Rouse, Finger, & Butcher, 
1999) showing that the 3PLM fits MMPI data better than the 2PLM. An impor­
tant finding from our work is that when MMPI-A factor scales are scored to 
measure psychopathology, the 3PLM fits better than the 2PLM for approxi­
mately 6% ofthe 316 items on the factor scales. Moreover, several items had 
unusually large (when judged from the perspective of achievement and ability 
testing) c parameters. For example, the item "Often talk to strangers" (keyed 
False for Social Discomfort) had an estimated c of .42, and the item "Feel the 
best ever" (keyed False for Depression) had an estimated c of .32. Nevertheless, 
most items were well characterized by the 2PLM. 

While reviewing our findings we realized that when compared with aptitude 
and achievement data, the direction in which a scale is keyed is less fixed with 
psychopathology and personality data. After acknowledging this point, it became 
immediately obvious that had we reversed keyed our scales; items that required 
a c parameter in our original analyses would now require a d parameter. We 
found evidence for this view in a series of rest score plots (Junker & Sijtsma, 
2000). These points led us to reanalyze our data with the 3PLM after receding 
the 15 MMPI-A factor scales to measure the absence of psychopathology. 

In these analyses we suggested that 1 - c could provide an admittedly crude, 
though nonetheless informative, estimate for d in the reverse-keyed scales. 
Thus, by analyzing each scale twice, we were essentially fitting a poor man's 
version ofthe 4PLM (note, however, that this shortcut for fitting the 4PLM will 
not give unbiased parameter estimates, and thus we do not recommend it for 
anything but exploratory analyses). The results from these analyses were 
intriguing as they bolstered our hunch that the 4PLM was needed to accurately 
characterize item response behavior on some psychopathology items. By classi­
fying any d (calculated by 1- c) less than .90 as substantial, we found that more 
than a third ofthe 316 items had d parameters that were substantially less 
than 1.00. Two example items in this category are "Even short trips make me 
anxious" (keyed True for low self-esteem), which had an estimated d of .50, 
and "Unwillingly did bad things because of friends" (also keyed True for low 
self-esteem), which had an estimated d of .66. 

Unfortunately, our enthusiasm for these results was tempered by the fact 
that our heuristic technique for estimating the 4PLM had not been shown to 
work in simulated data (because we had yet to carry out the necessary Monte 
Carlo work). Thus, before embracing the 4PLM as a viable model for psycho­
pathology data, it was critically necessary to estimate the parameters of this 
model with a psychometrically justifiable method. In this chapter we suggested 
that the Gibbs sampler offers such a method and that when it is applied to the 
LSE, there is ample support for the 4PLM with our psychopathology data. 

The 4PLM and Low Self-Esteem 

Consistent with our earlier findings, the Bayesian results suggest that only 3 
ofthe 23 LSE items have c parameters that are notably higher than 0.00. These 
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items are "Wholly self-confident" (keyed False, c = 0.24), "Am important" (keyed 
False, c = 0.09), and "Don't do something if others don't think it's worth it" 
(keyed True, c = 0.07). Apparently, individuals with low LSE scores (i.e., those 
with high self-esteem) have a nonzero probability of endorsing these items in 
the keyed direction. Are these findings surprising? We do not believe so. We 
suspect that these items tap traits in addition to low self-esteem. For instance, 
the items "Wholly self-confident" or "Am important" may also tap individual 
differences in humility, modesty, or just plain honesty. 

What was surprising, from the standpoint of traditional IRT modeling, was 
that the Bayesian results also indicated that almost all of the LSE items 
required a fourth parameter to characterize the upper asymptotes ofthe IRFs. 
Several exceptions to this trend were noteworthy by their rarity. For instance, 
the items "Wholly self confident" (keyed False, d = .95), "Give up trying to do 
things because of lack of confidence" (keyed True, d = 0.93), and "Am important" 
(keyed False, d = 0.94) all had d parameters with confidence bounds that 
included the upper boundary. This suggests that these items—all of which are 
highly face valid markers of low self esteem—are almost universally endorsed 
by individuals with high LSE scores. 

Turning now to the greater number of items with sizeable d parameters, 
several LSE items had upper asymptotes as low as .50 or lower. Examples 
include "Even short trips make me nervous" (keyed True; d = 0.40), "Friends 
convince me to do wrong" (keyed True; d = 0.48), and "Unwillingly did bad 
things because of friends" (keyed True; d = 0.52). Psychologically speaking, 
these findings suggest that less than half of adolescent boys from this popula­
tion with elevated LSE scores will become agoraphobic or succumb to peer 
pressures. 

Interpreting the c and d Parameters in Psychopathology Scales 

Mathematically speaking, the meanings ofthe c and d parameters in the 4PLM 
are unambiguous. When c is greater than zero, the IRF is flat in the lowest trait 
range; when d is less than 1, the IRF is flat in the highest trait range. In either 
case the item fails to discriminate among contiguous trait scores in a select 
trait range. Unfortunately, the psychological meaning of these results is less 
clear. In earlier work (Reise & Waller, 2003) we offered several interpretations 
ofthe c or d parameters in psychopathology assessment. We now expand upon 
those ideas. 

Our work on the 4PLM with MMPI data leads us to believe that there are 
at least two overlapping reasons why asymptote parameters are needed with 
psychopathology data: (a) item extremity; and (b) nonsymmetric item ambigu­
ity, which we interpret as a heretofore unrecognized form of item-level multi-
dimensionality. 

We first discuss item extremity because it is the easier notion to explain. 
Item extremity refers to symptoms or behaviors with extremely high- or low-
base rates. To illustrate this concept, consider the item "Happiest alone," which 
is keyed False on the extraversion factor scale. In a previous report (Reise & 
Waller 2003) this item had an estimated c parameter of .50 in a very large and 
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heterogeneous sample of persons. This finding suggests that 50% of the least 
extreme extroverts respond False (a keyed response) to the aforementioned 
item. In other words, being "happiest" when alone is an uncommon attitude 
among social animals. 

Other symptoms with a low-to-moderate base rate may require a d param­
eter. For instance, in unpublished research (Reise, 2004), we found that the 
unconditional probability of suicidal ideation in adolescents who are involved 
in the mental health system is less than .50. It is important that this remained 
true even for persons high on trait depression. Similar findings are found with 
other psychopathologies. For instance, Schneider's First Rank symptoms (e.g., 
auditory hallucinations, thought broadcasting, somatic hallucinations; see 
Schneider, 1959), which in media accounts are portrayed as pathognomonic for 
schizophrenia, are actually found in less than 75% of gold standard cases of 
schizophrenia (O'Grady, 1990). In other words, over 25% of people with schizo­
phrenia do not experience these symptoms. Items that measure these symp­
toms in diagnostic inventories should have d parameters that are substantially 
less than 1.00. 

We believe that item extremity is a plausible reason, but certainly not the 
only plausible reason, why c and d parameters are needed in psychopathology 
models. Indeed, the correlations between the asymptotes and the item diffi­
culty parameters on the 23-item LSE scale were modest to low: rM = .51 (95% 
CI = .37-.62) and r6c = .03 (95% CI = -.18—.20). This suggests that other rea­
sons must accoimt for our findings. 

We contend that a second and psychologically more interesting reason for 
our results is that many psychopathology items are psychometrically ambiguous 
for individuals at one extreme of the trait continuum, although not ambiguous 
for individuals at the other extreme. We have called this phenomenon non-
symmetric, content ambiguity (Reise & Waller, 2003). In our current thinking, 
nonsymmetric content ambiguity is a form of item-level multidimensionality. 

To illustrate this notion, consider the item "Feel the best ever" (keyed False 
on our Depression factor scale). In our terminology, for highly depressed individ­
uals this item is semantically unambiguous. Individuals in the throes of a 
depressive episode have (hopefully) felt better at other points in their lives. For 
a nondepressed individual, however, the meaning of this item is ambiguous. 
Many nondepressed persons respond False (the keyed response) to this item. 
Presumably these persons are not having the emotional "peak experience" of 
their lives while completing an omnibus, psychopathology questionnaire with 
567 items. 

To further illustrate this point, consider the item "Often talks to strangers." 
Previously, we reported (Reise & Waller, 2003) that this item has a large c 
parameter when it is keyed FaZse on our Social Discomfort factor scale. We 
also suggested that the item's meaning is clear for socially uncomfortable 
persons but is less clear for persons who are socially comfortable. Not sur­
prisingly, many individuals who lack social discomfort (i.e., socially comfort­
able individuals) avoid talking with strangers on buses, trains, and other 
social settings. A socially comfortable individual may avoid speaking to 
strangers because, in his or her mind, such behavior is rude or against religious 
dictate. 
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Does t h e 4PLM Offer a Dif ference T h a t M a k e s a Difference? 

Whether the 4PLM offers a psychometric difference that makes a difference is 
undoubtedly the central question of this study. We believe that when our results 
are viewed in aggregate, the answer to this question must be a resounding yes. 

Previously (e.g., Reise & Waller, 2003), we suggested that for some mea­
surement purposes a 2PLM may suffice even when the data are more accurately 
modeled by a three- or four-parameter model. Our reasons behind this claim 
were threefold. First, in our experience with psychopathology data, the relative 
fit between the models—in absolute terms—is rarely large even when it is sta­
tistically significant. (This is not true for the IPLM which, in our experience, 
does not fit MMPI data.) Second, trait estimates from the two- and three-
parameter models are highly correlated when scores are broadly sampled from 
the trait continuum. Third, a 2PLM IRF can often approximate a 3PLM or 
4PLM IRF with considerable accuracy by simply underestimating the item dis­
crimination parameter. 

The above comments notwithstanding, we believe that for many measure­
ment tasks it is critically important to use the most accurate IRT model and 
that with psychopathology data the best model will sometimes be the 4PLM. 
Several findings from our work have convinced us of this point. One finding of 
particular importance to clinical psychologists concerns the relative ordering of 
trait estimates in the three- and four-parameter models. 

It is not surprising that when we considered our aggregate sample of LSE 
data, we found that the maximum likelihood trait estimates from the three-
and four-parameter models were highly correlated. Because correlations are 
largely determined by scores at the distribution extremes, with heterogeneous 
samples it makes little difference whether trait estimates are computed by the 
two-, three- or four-parameter models when comparing score ranks. In each 
case, the individuals with the highest (or lowest) trait estimates will retain 
their relative positions regardless of model choice. 

Nevertheless, findings that hold for a heterogeneous sample may not gen­
eralize to a more homogeneous subsample. For instance, when we restricted 
our attention to individuals with high LSE scores (i.e., individuals with the 
lowest levels self-esteem), the rank-order correlation between the 3PLM and 
4PLM trait estimates was a modest .45. This finding demonstrates that at the 
clinically important end of the LSE continuum, model choice is important. As 
shown earher in this chapter, the various models also produce strikingly different 
pictures of measurement precision for this clinical assessment scale. Specifically, 
the standard errors for the highest scoring subjects on the LSE were consider­
ably larger in the 4PLM than in the 3PLM. Assuming that the 4PLM is the 
more appropriate model for this scale, our findings suggest that the 3PLM 
(or 2PLM) provides a false sense of measurement precision for precisely those 
individuals who are of greatest interest to clinicians. 

A few closing remarks concerning the effects of fitting the "wrong" model to 
psychopathology data deserve mention. We first consider how an item's dis­
crimination parameter can change across models. To keep matters simple, con­
sider a moderately difficult item with a large c parameter. All things considered, 
the item discrimination for such an item will be higher in the 3PLM than in the 
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2PLM. Moreover, if the empirical response function has a non-one upper 
asymptote, then the discrimination parameter will also be higher in the 4PLM 
relative to the 3PLM. These findings result from a simple geometric fact. 
Namely, the IRF must rise at a faster rate within a narrower trait range as its 
asymptotes move inward from 0.0 and 1.0. 

Choosing different models will also change item difficulty values. Recall 
that the difficulty parameter is defined at the inflection point ofthe IRF. In the 
2PLM, the inflection point occurs at the latent trait score that corresponds to a 
.50 item endorsement probability. In the 3PLM, the inflection point occurs 

where the response rate is .5 +—. Thus, for items with nonzero lower asymp-

totes, the difficulty parameters are shifted upward in the 3PLM relative to the 
2PLM. In the 4PLM the inflection point occurs where the response rate equals 
d c 
— +—. Thus, for items with upper asymptotes that are not equal to one, the 

item difficulties are lower in the 4PLM relative to the 3PLM (because —- < .5). 

When considered across all items, these location shifts have important conse­
quences for the estimated TIF. Consequently, although the IRF from a 2PLM, 
3PLM, or 4PLM may provide similar fits to an empirical item response func­
tion, the different item parameter estimates can yield very different pictures of 
how a test will perform in different samples. 

Measurement specialists are beginning to take a second look at the 4PLM 
(Loken & Rulison, 2006; Reise & Waller, 2003; see also Hessen, 2004). To our 
knowledge, this chapter describes the first application of the 4PLM to psy­
chopathology data. Naturally, because we are exploring relatively uncharted 
waters, many questions remain unanswered concerning the usefulness of the 
4PLM in other data sets and in other testing domains. In this chapter we applied 
the 4PLM to a single constmct and a single scale. If these results generalize to 
other constructs and scales, then the 4PLM will become a standard model of IRT. 
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MIXUM: An Unfolding Mixture Model 
to Explore the Latitude of Acceptance 

Concept in Attitude Measurement 

James S. Roberts, Jurgen Rost, 
and George B. Macready 

The latitude of acceptance construct has a long history in the psychology of atti­
tudes and attitude change. The concept can be traced back to attitude studies 
conducted by Carl Hovland and colleagues during the 1950s, which subsequently 
spawned the development of social judgment theory (Sherif & Hovland, 1961). 
Traditional attitude measurement techniques generally attempt to find the 
location of a given respondent on a unidimensional attitude continuum with 
poles that represent unfavorableness and favorableness toward the attitude 
object in question. From this perspective, an attitude is represented by a single 
point on the latent attitude continuum. In contrast, the latitude of acceptance con­
cept refers to the range of statements that the individual is willing to endorse, 
and thus, it corresponds to an interval surrounding an individual's location on 
the attitude continuum. 

From a social judgment theory perspective, both the individual's location 
on the attitude continuum and the individual's latitude of acceptance are 
important characteristics. For example, two individuals may have identical 
attitudinal positions on the latent continuum but may differ in their latitudes 
of acceptance. One of these individuals may be willing to endorse only a narrow 
range of attitude statements located close to the individual's attitude position, 
whereas the other person may be willing to endorse a much broader range of 
statements. Social judgment theory suggests that these latitudes have implica­
tions for attitude change (Sherif, Sherif, & Nebergall, 1965). Specifically, the 
maximum amount of attitude change can be expected when individuals are 
persuaded to accept statements near the bounds of their latitudes of accept­
ance. Consequently, a mechanism for estimating an individual's latitude of 
acceptance should prove useful to researchers interested in attitude change 

This work was supported by National Science Foundation Grant SES-0133019 and SES0536728, 
awarded to the first author by the Methodology, Measurement, and Statistics program in the 
Division of Social and Economic Sciences. The authors are grateful to Chan Dayton and Robert 
Mislevy for their comments and suggestions throughout the course of this project. 
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from a social judgment theory perspective. This chapter focuses on the develop­
ment of a method that can simultaneously estimate an individual's attitude 
toward a given object and also provide information about the person's latitude 
of acceptance. The method will combine concepts from both latent class model­
ing and unfolding item response theory (IRT). 

Unfolding Item Response Theory Models 

During the last two decades, there has been a substantial amount of research 
devoted to unfolding IRT models. Both parametric and nonparametric IRT mod­
els for unfolding have been proposed for both binary and polytomous responses 
(see Roberts, Laughlin, & Wedell, 1999, for a list of proposed IRT models for 
unfolding). The parametric IRT models for unfolding offer the possibility of sam­
ple invariant interpretation of item parameters (i.e., item locations and charac­
teristics), item invariant interpretation of person parameters (i.e., attitudes), 
and the ability to quantify measurement precision at an individual level. These 
possibilities can lead to improvements in attitude measurement including test 
equating, item banking, and computerized adaptive testing. 

The basic premise underlying unfolding IRT models is that an individual 
is more likely to endorse a statement to the extent that the sentiment expressed 
by the statement matches the individual's opinion. Psychometrically, this means 
that the individual is more likely to endorse a statement to the extent that the 
statement is located close to the individual on a unidimensional latent attitude 
continuum. Figure 8.1 illustrates the typical item characteristic curves (ICCs) 
that are suggested by unfolding IRT models. These curves are different from those 
found with traditional cumulative IRT models used for testing proficiency. 
Cumulative models only allow for monotonically increasing item characteristic 
curves. In the context of attitude measurement, this would imply that one is more 
likely to endorse a statement to the extent that one's attitude location dominates 
the location of an item. Several researchers (Andrich, 1996; Roberts, Laughlin, 
& Wedell, 1999; van Schuur & Kiers, 1994) have suggested that unfolding models 
are more appropriate than cumulative models when individuals indicate how 
much they disagree or agree with statements on a typical Likert or Thurstone 
attitude questionnaire. 

Incorporat ing Lati tude of Acceptance 
Into Unfolding IRT Models 

There have been previous efforts to incorporate the latitude of acceptance concept 
into unfolding IRT models. For example, Luo (1998) developed an IRT model 
that parameterizes latitude of acceptance. However, this work focused prima­
rily on item-level parameters.1 Specifically, the characteristic curve for a given 
item was stretched or shrunk along the latent continuum. In contrast, social 

iLuo (1998) did mention the possibility of parameterizing latitude of acceptance as a person param­
eter, but this parameterization was never explored. 
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V +.35 -.35 

Figure 8.1. Expected value functions under the MIXUM for \|/d = +.35, 0, and -.35 in 
Latent Classes 1 through 3, respectively. 

judgment theory depicts the latitude of acceptance concept as a variable that 
differs among individuals rather than among items. Luo, Andrich, and Styles 
(1998) came closer to the social judgment perspective when they estimated alter­
native group latitudes of acceptance for attitudes toward dmg testing in the work­
place. In their study, a different latitude of acceptance parameter was estimated 
for each of four groups of students in alternative academic disciplines. In this 
context, the latitude of acceptance varied across manifest groups of individuals 
as opposed to items. 

The purpose of this article is to illustrate a new way to model the latitude 
of acceptance construct using an IRT framework that is consonant with social 
judgment theory. As mentioned above, social judgment theory presumes that 
latitude of acceptance is a person attribute rather than an item characteristic. 
An unfolding item response model would ideally include a person-level parameter 
to reflect latitude of acceptance. Consequently, an unfolding IRT model would 
need two distinct parameters for every respondent: one parameter that reflects 
the respondent's position on the latent continuum (i.e., the respondent's attitude) 
and one that reflects the respondent's latitude of acceptance. Our suspicion, how­
ever, is that the degree of parameter estimation difficulty would increase sub­
stantially with the addition of a second person parameter to typical unfolding 
IRT models. We have consequently taken a more cautious approach. Like Luo 
et al. (1998), we have opted to parameterize the latitude of acceptance in alter­
native respondent groups. However, our new model is unique in that group mem­
bership is itself considered to be a latent variable. The model we propose is 
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therefore a latent mixture of several unfolding models in which item character­
istic curves are stretched or s h m n k differently along the latent continuum in 
each ofthe alternative latent classes (i.e., latent groups). This idea parallels the 
work of Mislevy and Verhelst (1990), Rost (1990, 1991), and Yamamoto (1989) 
in the cumulative IRT domain. 

A N e w Model : T h e Mixed Unfo ld ing Mode l (MIXUM) 

The MIXUM is an adaptation ofthe graded unfolding model (Roberts & Laughlin, 
1996) for polytomous disagree-agree responses. It is appropriate when subjects 
indicate their level of agreement using either a binary or graded scale. The 
response scale must be defined so that zero represents the strongest level of dis­
agreement and increasing levels of agreement are indexed by successive inte­
gers (e.g., 0 = strongly disagree, 1 = disagree, 2 = agree, and 3 = strongly agree). 
For an individual in latent class d, the model is defined by its response category 
probability function as follows: 

P[Z i =z\Qj ,v d ] = 

f 
exp zf t j -hd-ZK/t -^Xk 

f 
-i-exp 

z \ 

C 

I 
H>=0 

( M - z X e , - 8 , ) - z V d - X T * 
A=0 

exp w(<dj-hi)-w\)td-%*k + exp (M - wXQj - 5,:) - w\\id - £ Xk 
k=0 JJ 

(1) 

where 

Zi = an observable response to att i tude statement i, 
z = 0 , 1 , 2 , . . . , C; z = 0 corresponds to the strongest level of disagreement and 

z = C refers to the strongest level of agreement, 
C = the number of observable response categories minus 1, 
Qj = the location of individual7 on the atti tude continuum, 
8, = the location of a t t i tude s ta tement i on the at t i tude continuum, 
Xk = the location ofthe kth subjective response category threshold on the attitude 

continuum relative to the location of a given item; k = 0 , . . . ,C, 
\|/d = the lat i tude of acceptance parameter for individuals in la tent class d; 

d = l , . . . , D , 
M = the number of subjective response categories minus 1 (note that M = 2C +1). 

Note tha t the value of to is arbitrarily set to zero, although this choice has no 
effect on the resulting probabilities. The parameters are constrained to be sym­
metric about the point (8, - 8;) = 0, which yields: 

X(c+i)=0, (2) 

and 

T* = -T(M-*+I), forz = 1,2, . . . C . (3) 
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At a conceptual level, this premise implies that an individual is just as likely to 
agree with an item located at either -h units or +h units from the individual's 
position on the attitude continuum. In addition to the traditional location con­
straint required to achieve identifiability, the following constraint is also 
needed: 

i > = 0 . (4) 

The MIXUM yields symmetric, single-peaked expected value functions that 
are centered about the §, - 8, = 0. The breadth and the maximum of each expected 
value function are controlled generally across all items by the Xk parameters. 
However, the y\fd parameter essentially adds a constant to each nonzero xA param­
eter within the dth latent class. Therefore, the expected value function changes 
accordingly in each latent class. Figure 1 illustrates the expected value func­
tions obtained with a hypothetical four-category item in each of three latent 
classes. The hypothetical categories correspond to 0 = strongly disagree, 1 = dis­
agree, 2 = agree, and 3 = strongly agree. The vertical lines emanating from the 
horizontal axis form intervals on the latent continuum in which a given expected 
value function is greater than two (i.e., in which the function predicts some level 
of agreement). Conceptually, these intervals correspond to the latitudes of 
acceptance in the alternative latent classes. The xk values for each function are 
To = 0, Ti = -2.4, T2 = -1.6, and T3 = -.8. The latitude of acceptance parameter is 
equal to VI/J = .35, ̂  = 0, and x̂ a = -.35 in the three latent classes. This produces 
the following class-specific thresholds: 

Latent Class 1: XQ = 0, ti = -2.05, T2 = -1.25, and T3 = -.45 
Latent Class 2: To = 0, Ti = -2.40, T2 = -1.60, and X3 = -.80 
Latent Class 3: XQ = 0, Xi = -2.75, x2 = -1.95, and X3 = -1.15. 

As shown in Figure 1, adding a positive constant to all nonzero x* (as is done in 
Latent Class 1) causes the associated expected value function to become less 
spread out across the latent continuum. This yields a more narrow latitude of 
acceptance. The function also achieves a smaller maximum value in this case. In 
contrast, when a negative constant is added to all nonzero x* (as is done in Latent 
Class 3), the resulting expected value function becomes more spread out across 
the latent continuum. This results in a broader latitude of acceptance. The func­
tion also achieves a larger maximum value in this case. In summary, positive val­
ues of \|/d are indicative of narrower latitudes, and negative values represent 
broader latitudes. The \\fd parameters determine the width of these intervals, 
although they do not explicitly define their locations on the latent continuum. 

P a r a m e t e r E s t i m a t i o n i n t h e MIXUM 

Estimation of MIXUM parameters is accomplished with a two-stage procedure. 
In the first stage ofthe procedure, the person parameters, 8,, are integrated out 
ofthe likelihood equation, and the item and latent class parameters are estimated 
from this marginalized likelihood. Once the item and latent class parameters 
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are estimated, they are treated as fixed quantities and used to estimate person 
parameters. The specifics of this estimation strategy are described below. 

The General Logic ofthe Estimation Algorithm 

Estimation of Sj, t4, and \|/d parameters is accomplished using a marginal max­
imum likelihood (MML) technique similar to that implemented by Mislevy and 
Verhelst (1990) and Yamamoto (1989). The technique is based on an expectation-
maximization (EM) algorithm in which the estimated proportion of subjects in 
each latent class (i.e., the estimated mixing proportions) are calculated along 
with the expected distribution of 8 in each class. These values are used to esti­
mate the marginal likelihood function, which is subsequently maximized to find 
the optimal values of 8;, xk, and Yd- The mixing proportions and the empirical 
distribution of 8 in each latent class are obtained as a byproduct ofthe EM algo­
rithm. Estimation of 8 is accomplished using a modified expected a posteriori 
(EAP) method. Traditionally, an EAP estimate is the mean of the posterior 
distribution of 8 for an individual, given the individual's item responses and 
the item parameter estimates. In the MIXUM, the item characteristic curves 
change in each of D latent classes. Therefore, the individual's EAP estimate is 
calculated D times under the presumption that the individual is a member of 
each latent class. These D estimates of 8 are averaged together using the indi­
vidual's estimated probabilities of class membership as weights. 

The Details ofthe Estimation Algorithm 

Let Xj be one of the N response vectors in the data in which N is the total sam­
ple size. Let D be the number of latent groups from which individuals have been 
sampled. Let x,* refer to the ith element ofXj. Under the assumption of local 
independence, the conditional probability of observing a particular response 
vector, Xj, given 8,- and \\fd is equal to 

P[Xj | Qj:, Yd] = FI P[Zi = xji IO,, Vrf ]• (5) 
i=l 

If subjects are sampled from D populations, each with a continuous attitude 
distribution, denoted asgd(%), then the marginal probability of observing one of 
the N response vectors, Xj, in a given latent group, d, is equal to 

P d [ ^ ] = 7 P r [ ^ | e ^ Vd\gd{Q)dS>. (6) 

Suppose that the latent group membership was actually observed. The mar­
ginal likelihood ofthe response data could then be written as 

L = f [ f [ [ P d { X j r } (7) 
d=l j = l 
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where y^ is an indicator variable that is equal to one if the jth individual is a 
member of latent class d and is otherwise equal to zero. The log likelihood 
would be equal to 

D N 

ln(L) = I l Y ^ l n [ P d ( X J ) ] . (8) 
d=lj=l 

The general form ofthe first-order partial derivative ofthe log-likelihood func­
tion with respect to 8,, is given by 

91n(L) » ^ yjd dP.jXj] 
38, £t t iPd[Xj] d8i 

£ £ yjd Tapfc^ie] r , , ^ (e) 
98; P[Zi=Xji\e,yd] 

de. (9) 

The Equation 9 may be approximated using quadrature based on the rectangle 
method as follows: 

38, 
91n(L) _ f f f yjdLjd (Vf)MVf) dP[Z i=xj i\Vf,vd] 1 

k U M PM ^ P[Zi=Xji\Vf,yd] 

= j<j>j'£y#Hj i ,Ljdi !y f)MVf)dP[Zi=z\Vf,Vd] 1 
d=lf=lz=Oj=l 

D F C 

= 111 

r jd 38; 

r m dP[Z i=z\V f ,yd] 

P[Z l = 2|V /,Yd] 

&Ut*P[Zi=z\V f,Mfd] 38, 
(10) 

where 

Ljd(Vr) = l [ P [ Z i = x M \ V f ^ d ] (11) 
!=i 

^ = lL , d (V , )A , (V , ) (12) 
/=i 

1=1 Pjd 

and HjiZ is a dummy variable that is equal to one when Xji equals z and is 
equal to zero otherwise. In Equation 10, V̂  is a quadrature point, and Ad(Vf) 
is the rescaled density at Vf for latent group d. These density values con­
stitute the discrete prior distribution of 0. The scale ofthe Ad(Vf) values is 
such that 

XAd(Vf) = l. (14) 
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Additionally, Ljd(Vf) is the conditional probability of response pattern Xj at 
quadrature point V/in latent group d, Pjd is the marginal probability of response 
pattern Xj in latent group d, and rjZ/a is the expected frequency of response z for 
item i at quadrature point Vf in latent group d. Equation 10 includes a deriva­
tive ofthe response category probability function (i.e., dP[Zi = z\Vf, Ydl/38,) that 
is thoroughly described in a corresponding technical appendix that may be 
downloaded from http://www.psychology.gatech.edu/techrep/MIXUM. 

The Xk parameters are constant across items. Therefore, the derivatives of 
the likelihood function with respect to these parameters are slightly different 
from those for the 8; parameters. For a given Xk, the derivative of the log likeli­
hood is: 

31n(L) £ | , yjd dPd[Xj} 
dxk hnPd iXj ] dXk 

D N 

-11 yjd 
+? i 

d=lj=lPd[Xj ]_„;=! 

3P[Z,=^|e,Yrf 

dXk 
'lP[Zi=Xji\e,yd] 

Again, this derivative can be approximated using quadrature 

dP[Zi=z\Vf,yd} 

p[Xj\e,yd]gd(e)de. (is) 

rizfu 

3x* hk^P[Z i - z \Vf^ d ] dxk 
(16) 

Equation 16 includes a specific component, 3P[Zj = z\Vf, y /̂dXk, which must be 
evaluated separately for each x*. The derivation of this component is given in 
the aforementioned technical appendix. 

The derivative ofthe log-likelihood function with regard to a given latent 
class parameter, Yd, is equal to 

a in(L) = | , Y ^ _ a p ( J ^ 
3Yd MPd[Xj] 3Vd 

j=1Pd[Xj]_^i=1 

ap[zi=Xji\B,vd] 
3Yd 

lP[Z i=Xj i\Q,yd]_ 
P[Xj\8,\vd]gd(mQ. (17) 

Equation 17 can be evaluated with quadrature as follows: 

31n(L) F C I _ y y y r m dP[Zi = z\Vf, Yd] ( 1 8 ) 

aYd feiotiPiZi.zlVf,^] 3Yd 

The derivation of dP[Zi = z\Vf, Yd]/3Yd is given in the technical appendix. 
An EM algorithm similar to those described by Mislevy and Verhelst (1990) 

and Yamamato (1989) is used to solve the likelihood equations for 8„ x*, and Yd-
In the expectation stage of the algorithm, estimates of the 7 ^ quantities are 

http://www.psychology.gatech.edu/techrep/MIXUM
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calculated from the observed responses and the provisional item parameter 
estimates. If the latent group memberships were actually observed, then the "fa 
matrix of indicators would be known and the r ^ quantities could be calculated 
using Equation 13. However, the yjd quantities themselves must be estimated 
in the expectation step prior to calculating rizfd values. Following Mislevy and 
Verhelst (1990), the posterior expectation of ̂  is given as 

Y ^ - 5 ^ - (19) 
l(PpKv) 
i i=l 

Note that nd and nv are current estimates ofthe proportion of individuals in a 
given latent class. The values of y^ can be substituted for y,d in Equation 13 to 
calculate ri2fd. 

In the maximization stage ofthe algorithm, the r ^ estimates are treated 
as known constants, and then the likelihood equations are solved. Given that 
Tiifd estimates are fixed, it is possible to solve the likelihood equations for each 
item individually. Similarly, the solution for Yd may be derived separately for 
each latent class. The maximization stage continues until the most likely item 
parameter and latent group estimates for all items and groups have been com­
puted for a given set of rizfd values. The completion of a single expectation stage 
followed by a single maximization stage constitutes one cycle within the EM 
algorithm. Additional cycles are conducted until the largest change in any item 
or latent class parameter estimate, from one cycle to the next, is arbitrarily small 
(e.g., less than .0005). 

The maximization stage of the EM algorithm proceeds in three steps. In 
the first step, the likelihood equations associated with the Yd are solved. The 
solution is computed using Fisher's method of scoring, and thus, the informa­
tion for each Yd parameter is required. The general formula for information has 
been derived by Rao (1973), and in this case, it specializes to 

/ w - t t ^ f M , \ , aPta:.|y,.,,,]aP[a-.|y,,T,]| (20) 
/•=ii=i z*oP[Zi=z\Vf,x\fd] 3Yd 3Y' 

where JV^ is the expected number of persons in latent group d at quadrature 
point Vf who responded to item i 

JV«H = X ^ B - (21) 

The value of Nifd is calculated in the expectation stage ofthe algorithm and is 
held constant during the maximization stage. In the method of scoring, the 
update function used to calculate Yd parameters on the qth iteration is given by 

„f - ,„ j . f-i 9 1 n ( L ) roo\ 
Vd, - Yd̂ -i +1 vd ^ • (22) 
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The Yd parameter for a given latent class is updated in an iterative fashion 
until there is little change from one iteration to the next or until some maxi­
mum limit of iterations has been reached (e.g., 30 iterations). 

In the second step, the likelihood equations associated with the x* parame­
ters are solved. The solution is computed using Fisher's method of scoring, and 
thus, the information matrix for the x* parameters is required. The information 
matrix is denoted as 

T = 

*T1T1 ^T1T2 

lx2ii i n n 

L-^Ctl •1tCt2 

••• I 
wc 
mc 

• • • / T-CXC J 

(23) 

The elements ofthe information matrix are derived in Rao (1973) and are 
equal to 

D F l 

w=11X^1 dPlZ^zWf^d] 
d^Mi=i z=0P[Zi = z\Vf,yd] 

3P[Zi=zlVf,Yd] 
3X*. 

dXk 
(24) 

In the method of scoring, the update function used to calculate Xk parameters 
on the qth iteration is given by 

Xl 

X2 

tc. L-tcL 

+ [/xl 

9-1 

(25) 

The xh parameters for a given item are updated in an iterative fashion until there 
is little change in parameters from one iteration to the next or until the maxi­
mum limit of iterations has been reached. 

In the third step ofthe maximization stage, the likelihood equations for the 
S; parameters are solved for each item individually. The solution is, again, com­
puted using the method of scoring, and the information scalar required in the 
solution is denoted as /&. 

The scalar is derived in Rao (1973) and is equal to 

D F _ C -̂  

hi = l l N i f d l p r „ _ „ -, 
d=l/-=l z=oP[6i = Z\Vf,\lfd\ 

(dPr[Z i=z\Vf,^d] 
35; 

(26) 
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The parameters are updated in an iterative fashion, and the update equation 
for 8; on the qth iteration is given by 

Updates continue until there is little change in the 8; estimate from one iteration 
to the next or until the maximum limit of iterations has been reached. 

The three steps ofthe maximization stage are performed repeatedly until 
there is little change in any parameter estimate from one repetition to the next 
or until 10 repetitions have been performed. The conclusion of the maximiza­
tion stage constitutes the end of a given EM cycle. The stability of parameter 
estimates is evaluated at the end ofthe EM cycle, and additional cycles are per­
formed if needed. 

Adjusting Prior Distributions and Updating Mixing 
Proportion Estimates 

Calculation ofthe fm quantities in the expectation step ofthe EM algorithm 
requires the use of prior distributions for 8 in each latent class and estimates of 
the mixing proportions (i.e., Jtd). These quantities are adjusted during the EM 
algorithm in successive stages. First, the posterior density in each latent class 
is rescaled so that it integrates to one, and then this density is substituted for 
the prior density, Ad{Vf), on the next iteration. Specifically, this rescaling is 
done as follows: 

l N i f d 

M V f > - r F (28) 
l l N i f d 
i=l /•=! 

Next, the quadrature points in the D classes are rescaled to maintain the loca­
tion constraint required for model identification. Specifically, this is done by 
rescaling the quadrature points so that the overall distribution (ignoring latent 
class structure) has a mean of zero. The constraint required is as follows: 

i i [ A * ( V f ) ] V f = 0 (29) 
d = l /•=! 

Note that the locations of quadrature points are the same in all latent classes 
following the implementation of this constraint. Finally, updated estimates of 
the latent class mixing proportions are substituted for the current estimates 
one each iteration. Updated estimates are calculated as 

2V 

l l j d 

^V- (30) 
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All ofthe foregoing adjustments are implemented after the solution has con­
verged using the initial prior distributions and mixing proportions. Iterations 
are subsequently continued adjusting both the prior densities and mixing pro­
portions simultaneously until final convergence is achieved. 

Developing Initial Item Parameter Values and Empirically 
Based Prior Distributions 

The EM algorithm requires a judicious choice of initial item parameter values in 
order to avoid local maxima. In practice, these starting values are obtained by 
estimating item parameters from constrained versions ofthe MIXUM. For exam­
ple, the graded unfolding model is used to produce initial 8̂ , and xh estimates 
under the assumption that all subjects are from a single latent group. (Starting 
values for the graded unfolding model are given in Roberts & Laughlin, 1996). 
These estimates are derived using a discrete standard normal prior distribution 
for 0. Once the estimates for 8, and Xk have converged, they are used as initial esti­
mates in the full MIXUM. At this point, empirically based prior distributions for 
8 in each latent class are used along with empirically derived start-up values for 
Yd- The EM algorithm uses these prior distributions in a static fashion and pro­
ceeds until convergence is reached and stable values of 8;, xk, and Yd have been 
achieved. Following this step, the prior distributions of 8 in each latent class 
are adjusted while simultaneously reestimating 8;, xk, and Yd parameters. In 
the final step ofthe algorithm, the mixing proportions are adjusted along with 
the corresponding prior distributions of 8 while simultaneously estimating the 
item parameters. This stepwise approach to parameter estimation appears to 
work well in the limited number of recovery simulations performed to date. 

At the beginning of the estimation process for the full MIXUM, a discrete 
prior distribution for 8 must be specified in each latent class. These distributions 
correspond to the Ad( Vf) values in Equation 10. The social judgment theory lit­
erature on latitude of acceptance suggests that latitude is inversely related to 
(positive or negative) attitude extremity. Therefore, initial prior distributions 
for 8 in each latent class are developed empirically using theory as a guide. This 
development begins by deriving a rough estimate of each individual's 8, value. 
Each of these estimates are calculated by taking a weighted average of prelimi­
nary 8; values corresponding to those items the individual has endorsed to at 
least some extent. The weights are simply the integer-valued response codes. 
(Recall that higher levels of agreement are coded with larger integers. Thus, 
statements that the individual agrees with most strongly receive the most 
weight when averaging 8,.) Second, an empirical index of each individual's lati­
tude of acceptance is derived on the basis ofthe range of preliminary 8, locations 
corresponding to items the individual has endorsed. The absolute values ofthe 
Qj estimates along with the empirical estimates of latitude are used to cluster 
individuals into D groups using a K-means cluster analysis (Hartigan & Wong, 
1979). The within-cluster distributions of the signed 8, estimates are used to 
develop initial Ad(V/) values. Specifically, the 8,- estimates within a cluster are 
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assigned to the closest quadrature point, and the proportion of 8,- estimates at 
each quadrature point is used as the initial value for Ad(Vf). Finally, the initial 
Yd values are calculated by averaging the empirical latitude of acceptance esti­
mates within a given cluster and then rescaling these averages so that they 
have a mean of zero and a maximum absolute value of 0.2. 

Figure 8.2 illustrates a typical prior distribution produced by this empiri­
cally based procedure. As shown in the figure, the prior distribution for the first 
latent class tends to be bimodal in shape with modes at more extreme regions 
of the continuum. The second latent class tends to have a bimodal shape also, 
but the modes are generally less extreme than the first. This pattern tends to 
continue until one considers the final latent class in the series. The final latent 
class is generally located between the modes of the other distributions and is 
generally single peaked. The initial Yd parameter for the first latent class is usu­
ally largest (positive), whereas the parameters for subsequent latent classes 
become progressively smaller (negative). Consequently, the latitude of acceptance 
for the first latent class is usually smallest with subsequent classes exhibiting 
successively broader latitudes of acceptance. 

Person Parameter Estimation 

The MML estimates of item and latent class parameters are used in conjunction 
with the observed responses and the individual's estimated probabilities of class 
membership to derive person parameter estimates. These person parameter 
estimates constitute the individual attitude estimates. In this study, person 
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Figure 8.2. A typical set of prior distributions generated by the K-means cluster 
strategy. 
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parameter estimates are obtained using a modified EAP procedure in which 
the estimate for the jth individual is calculated as 

Qj=lyjd 
d=i 

lVfLjd(Vf)MVf) 
M 

iLjdiVfJMVf) 
(31) 

where Ljd(Vf) is the conditional likelihood of observing the jth individual's 
response vector given that the individual is in latent class d and is located at 
quadrature point Vf. The modified EAP estimate, 8,, is weighted average of D 
different EAP estimates where each of these EAP estimates are derived by 
assuming that the individual is a member of the dth latent class. The weights 
for this average are simply the posterior probabilities that the individual 
belongs to the dth latent class. Note that y^ and Ad(Vf) in Equation 31 are the 
adjusted quantities obtained on the last iteration ofthe MML procedure. 

Parameter Recovery 

A parameter recovery simulation study was conducted to assess the accuracy of 
estimates derived with the aforementioned method. The study generated 
responses from 2,000 simulees to questionnaires of various lengths. The size of 
the Yd was varied along with the true distribution of 8j and the mixing propor­
tion in each latent class. The details of this study are given in the technical 
appendix corresponding to this report. The results suggested that MIXUM 
parameters could be estimated very accurately with long tests (e.g., 60 items 
with four response categories per item). Shorter tests (e.g., 20 items) could also 
yield highly accurate estimates when the average absolute difference in Yd 
parameters between adjacent latent classes was .7 or greater. 

A R e a l D a t a E x a m p l e 

The aforementioned estimation strategy was applied to a large set of responses 
collected with a questionnaire designed to measure attitude toward abortion. 
The resulting analysis provided a realistic example of the challenges inherent 
in the application ofthe MIXUM. It also illustrated the types of valuable infor­
mation that the model may provide. 

Data and Analysis Strategy 

Responses from 750 undergraduate students to 47 items indexing attitudes 
toward abortion were analyzed in this example. These data were originally 
reported by Roberts, Donoghue, and Laughlin (2000), who suggested that 
responses to these 47 statements were unidimensional. The data were origi­
nally scored in six response categories (i.e., 0 = strongly disagree, 1 = disagree, 
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2 = slightly disagree, 3 = slightly agree, 4 = agree, and 5 = strongly agree). 
However, to induce simplicity in this novel application, Response Categories 1 
and 2 were collapsed, as were Response Categories 3 and 4. This yielded four 
response categories coded as 0 = strongly disagree, 1 = generally disagree, 2 = 
generally agree, and 3 = strongly agree. 

Separate solutions were obtained for two, three, four, and five latent classes. 
Each analysis was performed with a total of 600 quadrature points across all 
classes in an attempt to balance the number of densities estimated in these 
analyses. Thus, there were 300 quadrature points for the two-class analysis, 
200 quadrature points for the three-class analysis, 150 quadrature points for 
the four-class analysis, and 120 quadrature points for the five-class analysis. 
Quadrature points were equally spaced in each group and initially ranged from 
-4 to +4 prior to adaptation. The convergence criterion was set to .0005. 

Results 

The optimal number of latent classes for these data was selected using various 
sources of information, including the interpretability ofthe solution, the expected 
number of members in the smallest class, the number of nonredundant param­
eter estimates,2 and a variety of information criteria. Table 8.1 gives the num­
ber of nonredundant parameter estimates for each model along with the 
corresponding marginal log likelihood, and the AIC (Akaike's information cri­
terion; Akaike, 1973), BIC (Bayesian information criterion; Schwarz, 1978), 
and CAIC (consistent Akaike's information criterion; Bozdogan, 1987) informa­
tion criteria. As shown in the table, the solution with five latent classes had the 
smallest values for all three information criteria and seemed optimal in that 
sense. However, the five-class solution had one class with a mere 26.25 expected 
members (i.e., only 3.5% ofthe sample). Additionally the five-class solution did 
not substantially increase the interpretability of the results as compared with 
the four-class solution. Therefore, it was not considered further. Based on the 
aforementioned criteria, the four-class solution appeared to provide a reason­
able level of model fit, interpretability, and expected number of individuals in 
each latent class, and it was ultimately selected for further study. 

The estimated locations ofthe 47 abortion attitude statements (i.e., the 8; val­
ues) are shown in Figure 8.3 along with the statement content for prototypical 

2The number of nonredundant parameter estimates is calculated as I + C + 2*(D - 1) + 600 - D - 1. 
This deserves some explanation and cautionary remarks. There are / 8; parameters and C nonzero 
Xk parameters estimated freely in the solution. There are D v|/d parameters, but they must sum to 
zero. This summation constraint leads to D - 1 free parameters to be estimated. Similarly, there 
are D Kd parameters, but they must sum to one. This also yields D - 1 parameters to be estimated. 
Finally, there are 600 densities estimated across all latent classes corresponding to the quadrature 
points in the MML algorithm. However, the densities in each class must sum to one. Additionally, 
these distributions must have a mean of zero across latent classes. This yields 600 - D - 1 free den­
sity parameters. A word of caution is in order with regard to our inclusion ofthe 600 - D - 1 param­
eters associated with the latent distributions of 8. Although these parameters are free to vary, they 
do not generally provide nonredundant pieces of information. Nonetheless, we treat them as 
though they were nonredundant parameters for purposes of model selection. 
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Table 8.1. Information Criteria for Alternative Latent Class Models 

Number of 
classes 

Nonredundant 
parameters 

Marginal 
ln(L) AIC BIC CAIC 

2 
3 
4 
5 

649 
650 
651 
652 

-36,384.588 
-36,179.995 
-36,073.057 
-35,999.484 

74,067.176 
73,659.991 
73,448.113 
73,302.967 

77,065.604 
76,663.038 
76,455.781 
76,315.255 

77,714.604 
77,313.038 
77,106.781 
76,967.255 

Note. AIC = Akaike's information criterion; BIC = Bayesian information criterion; CAIC = 
consistent Akaike's information criterion. 

items. As seen in the figure, the statements were rationally ordered on the latent 
continuum. The two poles represented extreme prolife and prochoice perspectives, 
respectively, and statements near these poles reflected this extremity. (Note that 
the orientation of the poles is arbitrary in symmetric unfolding models.) When 
moving away from the poles to the more moderate regions ofthe continuum, the 
statement content became more moderate in nature but still reflected a somewhat 
prolife or prochoice opinion depending on which side of the continuum a state­
ment was located. Finally, those statements near the center ofthe continuum con­
veyed a more or less neutral sentiment with respect to abortion. 

The MIXUM also provided modified EAP estimates of each respondent's 
location on the latent continuum (i.e., the 8, values). The relative frequency dis-
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Figure 8.3. MDCUM item locations for the 47 abortion attitude statements. 
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tribution for these estimates is shown in Figure 8.4. The mean estimate was 
equal to zero, and the standard deviation ofthe estimates was equal to 1.555. 
The median estimate was equal to .424, which fell between the statements 
"Abortion should be a woman's choice, but should never be used simply due to 
its convenience" and "Abortion should generally be legal, but should never be 
used as a conventional method of birth control." These data suggest that the 
median individual in this sample had a moderately positive orientation toward 
the practice of abortion. 

The mixing proportions associated with the four-class solution were equal 
to .06, .48, .38 and .08 for Latent Classes 1 through 4, respectively. Thus, each 
class represented a reasonable number of subjects with the smallest latent class 
corresponding to an expected frequency of 45 subjects. The estimated xk values 
were equal to Ti = -3.313, X2 = -2.435, and x3 = -.925, and the latitude of accept­
ance parameters were equal to Yi = -803, Y2 = -283, Ya = -.205, and Y4 = --880 for 
the four latent classes, respectively. This led to the four-item expected value 
functions shown in Figure 8.5. The corresponding latitudes of acceptance are 
also shown in the figure. The latitudes of acceptance became progressively 
larger for Latent Classes 1 through 4. Specifically, members of Latent Class 1 
had the narrowest latitude. An individual in this class was expected to agree 
with an attitude statement to some extent if it fell within ± .88 units ofthe indi­
vidual's own location on the latent continuum. Members of Latent Classes 2 
and 3 exhibited more moderate latitudes of ± 1.35 and ± 1.80, respectively. The 

0.20 

Figure 8.4. Distribution of modified EAP estimates for all 750 respondents. 



192 ROBERTS, ROST, AND MACREADY 

-.205 -.880 

Figure 8.5. MDCUM expected value functions for the four latent classes. 

fourth latent class was associated with the largest latitude of acceptance equal 
to ±2.45. When combined with the values ofthe mixing proportions listed above, 
this suggested that the majority of respondents (86%) had moderate latitudes of 
acceptance. Far fewer individuals had narrow or large latitudes. 

The top panel of Figure 8.6 displays the posterior distribution of 8 that was 
estimated with the EM algorithm for the four-class solution. The distributions 
have been smoothed by summing the posterior densities observed for each set of 
10 successive quadrature points within a given latent class. Those individuals 
with the smallest latitudes of acceptance (i.e., those in Latent Class 1) were pri­
marily located in the extreme prolife and the moderately prochoice regions of 
the continuum. Those individuals with the broader latitudes of acceptances (i.e., 
those in Latent Classes 2 and 3) were located primarily in the moderately and 
extremely prochoice regions of the attitude continuum. Finally, those with the 
largest latitudes of acceptance (i.e., those in Latent Class 4) were located mostly 
in the moderately and extremely prochoice regions ofthe continuum as well. 

There are no rigorous model fit statistics for the MIXUM. However, graph­
ical indices of model fit are easily generated. Figure 8.7 provides graphic infor­
mation about the global fit of the MIXUM to the abortion attitude data. The 
graph was produced by sorting each person-item pair into homogenous groups 
of 75 pairs based on 8, - 8, values. Within each homogenous group, the average 
observed response and the average expected value predicated by the MIXUM 
were calculated and plotted against the average 8, - 8; value. As shown in the 
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Figure 8.6. Posterior density of 9 in each latent class. 
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Figure 8.7. Graphical index of global model fit. Average expected values from the 
MIXUM are given by the solid line, whereas average observed responses are given by 
the dots. 
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figure, the MIXUM was able to locate individuals and items on the latent con­
tinuum such that more observed agreement was obtained, on average, as 8, - 8; 
approached zero. Moreover, the fit ofthe average expected value function to the 
average observed response appeared reasonably good. 

Figure 8.8 provides graphical information about item level fit for 10 proto-
typical items across the attitude continuum. Respondents were first rank ordered 
on the basis of their 8, values and then clustered into groups of 30 individuals 
per group. The average observed item response (dot) and average model expec-

= 1 0 1 B 3 =4 = 3 = 2 = 1 D 1 Z 3 
B 

- 1 0 1 2 3 =4 = 3 =2 =1 0 1 2 3 

= 4 = 3 =Z =1 0 1 2 3 , 3 = 2 = 1 O 1 Z 

=4 = 3 =2 =1 0 1 2 3 
a 

= 4 = 3 = 2 = 1 0 1 Z 3 

Figure 8.8. Item fit for prototypical attitude statements spanning the entire attitude 
continuum. The dots represent average observed responses whereas the line represents 
average model expectations. 
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tation (solid line) are both plotted as a function ofthe average 8, for each respon­
dent group. Most items were fit reasonably well. In those cases in which notice­
able misfit occurred, it was usually the case that the model expectations did not 
fold enough to match the observed responses. (See the second row of panels 
in Figure 8 for an example.) This suggests that perhaps even more flexibility 
in the item response function may be warranted. For example, the subjective 
response category thresholds and/or the discriminating capability could be esti­
mated separately for each item as in the generalized graded unfolding model 
(Roberts et al., 2000). 

Discussion 

As shown in the previous example, the MIXUM is able to characterize attitude 
items, estimate individual attitudes, provide estimates ofthe latitude of accept­
ance in alternative latent classes, and estimate the expected proportion of 
respondents in each class. Additionally, it can estimate the posterior distribu­
tion of 8, in each class. With respect to item characteristics, the attitude state­
ments were ordered on the latent continuum in a logical manner such that those 
with extremely prolife or prochoice sentiments were located at opposite poles of 
the continuum (Figure 3). Extremely prolife or prochoice items exhibited item 
characteristic curves that were, more or less, monotonic in nature (Figure 8). 
The more moderate prolife or prochoice statements were located at less extreme 
positions on the continuum and exhibited a marked fold on one side ofthe cor­
responding ICCs. The fold emerged because those individuals with attitudes 
close to the locations of these moderate statements endorsed them the most, 
whereas respondents with more discrepant attitudes in either direction miti­
gated their endorsement. Finally, those items that were basically neutral in 
wording were, indeed, located near the center ofthe item location distribution 
and exhibited ICCs that were thoroughly folded on both sides of a single peak. 
In these cases, individuals with neutral attitudes endorsed the neutral state­
ments the most, and those with moderate or extreme attitudes, in either direc­
tion, endorsed the item less and less. The shapes of these ICCs are exactly what 
one should find when item responses are consistent with an unfolding model. 

Although no rigorous indices of model-data fit were offered for the previous 
example, the graphical indices suggested that the MIXUM fit the responses to 
these attitude statements reasonably well. The unfolding nature ofthe responses 
was evident at both the model and item levels (see Figures 7 and 8). There is still 
room for improvement, however, and past research has suggested that additional 
item parameters may be required to provide optimal fit at the item level. 
Nonetheless, the simple unfolding IRT model embodied in Equation 1 performed 
adequately when thresholds were modified in alternative latent classes as was 
done here. 

The MIXUM provides the posterior distribution of 8 in each class (Figure 6), 
and these distributions are interesting from a psychological perspective. One 
might speculate that individuals with more extreme attitudes would have the 
narrowest latitudes of acceptance, whereas those with more moderate attitudes 
might be amenable to a broader range of opinions. However, this speculation 
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was only partially confirmed in the previous example. Individuals with the nar­
rowest latitudes of acceptance were primarily located in the extreme prolife 
region of the continuum, although there was a second cluster of these individ­
uals in the moderately prochoice region as well. In contrast, individuals with 
the most prochoice orientations were unlikely to possess narrow latitudes. 
Instead, such individuals were likely to have moderate or even broad latitudes 
of acceptance. One explanation of these findings is that individuals with more 
extreme prochoice attitudes are naturally expected to be more tolerant of alter­
native opinions with regard to abortion. The idea of being prochoice implicitly 
suggests that one should tolerate other opinions that could lead to broader lat­
itudes of acceptance. In contrast, individuals who hold the most prolife orienta­
tions are unlikely to tolerate alternative positions because it would violate the 
very foundation of their right-to-life opinions. 

Individuals with moderately prochoice orientations were represented 
noticeably in all four latent classes in the previous analysis. Thus, some of these 
individuals had relatively narrow latitudes of acceptance, whereas others had 
more moderate or even broad latitudes. This accentuates the point that individ­
uals with nonextreme opinions may be very "ego involved" with their stances 
and may refuse to endorse statements that deviate much from their moderate 
positions (Sherif et. al., 1965). Others from this moderate attitude segment may 
identify less strongly with their attitudes and, consequently, be more accepting 
of a wider variety of opinions. 

Conclusions 

The MIXUM appears to be a reasonable method to measure attitudes and quan­
tify the latitude of acceptance simultaneously in large scale attitude measure­
ment situations. MIXUM parameters may be estimated using a flexible MML 
framework, and initial parameter recovery simulation results suggest that accu­
rate estimates can be obtained in large-scale testing situations. Moreover, the 
real data analysis reported here suggests that the model can fit responses to a 
typical attitude questionnaire relatively well. 

Although we have focused on quantifying the latitude of acceptance, the 
general MIXUM strategy is quite flexible and can be used to model other struc­
tural features in the context of unfolding IRT models. For example, the MIXUM 
strategy could be used with a more general IRT model like the generahzed graded 
unfolding model (Roberts et al., 2000). In this case, one or more item parameters 
could be varied simultaneously in a prespecified number of latent classes. If the 
concept of latent classes is replaced with a manifest classification variable, then 
the MIXUM method becomes a multiple group unfolding IRT model similar 
to those found in the cumulative domain. Finally, if the probability function is 
allowed to change its parametric form across latent classes, then the method 
becomes an unfolding analogue of Yamamoto's (1989) hybrid model. These other 
applications remain for future exploration. 
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Recent Development and Prospects 
in Item Generation 

Isaac 1. Bejar 

The perspective taken in this chapter is that item generation should be seen as 
an opportunity to orchestrate psychometric and psychological considerations 
with the goal of producing tests that yield scores that have well-founded inter­
pretation for the use to which scores will be put. As we argue throughout, item 
generation also presents an opportunity for testing psychological theories. 
Thus, one purpose of this review is to argue that item generation needs to be 
understood in that larger context. To that effect, we adopt the idea of an item 
model as the basis for item generation. We define an item model as the specifi­
cations for authoring an item. The specifications are sufficiently detailed such 
that items can be instantiated by either algorithmic means or by authors fol­
lowing a set of authoring guidelines. The term has gained some acceptance over 
the last few years. It was first proposed by LaDuca, Staples, Templeton, and 
Holzman (1986) and has been adopted by work in item generation. Bejar et al. 
(2003) defined item modeling as 

a construct-driven and validity-enhancing approach because it entails a 
more thorough understanding ofthe goals ofthe assessment and the appli­
cation of pertinent psychological research to the design oftest content than 
the current mode of item development. That is, item models set the expec­
tation for the behavior ofthe instances produced by a given model (e.g., dif­
ficulty and discrimination) and those expectations can be verified upon 
administration of a test consisting of those instances, thus providing an 
opportunity to refine our understanding of the construct and supporting 
psychological principles, (p. 3) 

The language does not stress the mechanism for generation, which could be 
automated or manual, but rather the implications for validity and the scientific 
standing ofthe eventual scores based on items that have withstood theoretical 
and empirical challenge. 

Conceiving item generation as consisting of generation and a prediction 
about the behavior ofthe item on the basis of a suitable theory or model is what 

I am grateful to Randy Bennett, Susan Embretson, and Aurora Graf for their extensive editorial 
and substantive input, which I believe has improved the document. 
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Bejar (1993) called a Popperian mechanism. Popper (1959/1992) argued that the 
standing of a scientific theory depended on its falsifiability. That is, producing 
items based on item models informed by theory presents researchers with the 
possibility of testing the falsifiability ofthe theory they have resorted to in build­
ing those item models. For example, a theory of what accounts for the psychome­
tric properties of items can be recast as a set of item models. After a test that 
includes instances of those item models is administered, we are in a position to 
challenge or corroborate the theory by contrasting the observed and predicted 
theoretical psychometric attributes of items, such as difficulty, discrimination, 
and response time. Corroborating the predictions strengthens the item models 
and the theory behind them. By contrast, inconclusive results, or failing to cor­
roborate the predictions, call for revision to the item models, possibly the the­
ory that led to the formulation of the prediction or the experimental design. 
Similarly, attempting to account for the psychometric attributes of instances 
by a competing theory that is constmct-irrelevant is informative. Such attempts 
immunize the assessment development process from the phenomenon of confir­
mation bias (Nickerson, 1998). If the competing theory fails, researchers have, 
as a bonus, counterarguments for allegations of constmct-irrelevant variance in 
the eventual scores. By contrast, if the competing theory is confirmed, they have 
more work to do. 

Item models can serve to evaluate a theory while serving pragmatic objec­
tives. For example, tests based on item models could be designed to minimize 
the possibility of pre-knowledge oftest content (Morley, Bridgeman, & Lawless, 
2004), an increasing risk under computer-based continuous testing (Davey & 
Nering, 2002), or to produce a large number of items. However, item models can 
also be seen as repositories of knowledge for producing items that are aligned 
with the constmct under consideration, which prevents us from inadvertently 
incorporating into those items the elicitation of construct irrelevant variabil­
ity in performance. Thus, item models have implications for the validity of an 
assessment—specifically, the theoretical underpinnings of an assessment, as 
well as the consequential impact of the assessment. In short, item modehng has 
implications for implementing the conception of validity described by Messick 
(1989). 

This view of item generation suggests several considerations to keep in 
mind when evaluating progress in this line of research: 

1. One consideration is the theoretical basis, or lack thereof, for an account­
ing ofthe variability in the psychometric attributes among instances pro­
duced from item models. 

2. A second consideration is imputing a psychometric characterization to 
instances of item models. This requires attention to the statistical means 
for imputing those psychometric characterizations as well as the means 
by which we bind the imputed characterization to a specific instance. 

3. The third consideration is the mechanism for instantiating items 
from item models. That is, what forms do item models take in a spe­
cific domain? 
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With respect to the first consideration, Drasgow, Luecht, and Bennett 
(2006) proposed the distinction between weak and strong theory as a means of 
distinguishing among approaches to item generation. Operating from strong 
theory enables the production of items that range in their psychometric attri­
butes in a theoretically predictable manner. By contrast, when researchers 
operate from weak theory they, in effect, apply case-based reasoning; that is, if 
they know the psychometric attributes on one item, they should be able to hold 
constant the psychometric attributes of items like it. At most, they may be able 
to hold constant the psychometric attributes of instances. Specific approaches 
to item generation have been associated historically with weak and strong 
theory, but the association is not essential. 

Bejar (2002) discussed a dichotomy for distinguishing between item mod­
els designed to produce either isomorphs or variants but did not explicitly 
associate the distinction with the strength and scope ofthe theoretical under­
pinnings behind the item models. (The term isomorph has roots in cognitive 
work [Kotovsky & Simon, 1990] on problem solving concerned with the basis 
of difficulty in problem solving puzzles like the Tower of Hanoi.) Although 
item models designed to produce isomorphs can be an instance of case-based 
reasoning when our theoretical knowledge is limited, such models can also be 
applied in pursuit of a stronger theory or can even be based on strong theory. 

Bejar (2002) also discussed item models that produce variants that range 
in their psychometric attributes. Examples of such models can be found in the 
work of Embretson (1998) and Bejar (1990), in which the items are highly 
figural. The latter case was concerned with mental rotation (Shepard & 
Metzler, 1971). It is an informative case because a single variable, angular 
disparity, was the basis for generation and for difficulty modeling, and the 
difficulty model had strong theoretical backing. In general, however, the vari­
ables required for instantiating items and the variables that model the psy­
chometric attributes of the items are not the same (Deane, Graf, Higgins, 
Futagi, & Lawless, 2006). Angular disparity was such a potent determinant 
of difficulty in the Bejar (1990) study, as predicted by previous research, that 
for illustrative purposes it is not necessary to go further. However, a full 
analysis of the mental rotation test would likely require figure-specific vari­
ables for instantiation purposes. Specifically, a megamodel for mental rota­
tion could consist of item models for each possible figure. Within each such 
model instances of different difficulty could be produced by varying the 
angular disparity (Homke, 2002). In short, it appears useful to consider the 
strength of the theoretical grounding for item generation as an independent 
facet and distinct from the facets concerning the means for instantiation and 
imputation of psychometric attributes. We discuss instantiation and imputa­
tion of psychometric parameters for each ofthe domains to be reviewed in the 
following sections. 

The outline for this chapter is as follows. We first discuss the evolution of 
the concept of validity and connect that evolution with the perspective outlined 
in this section. We then turn to recent developments in item generation that 
illustrate the view expressed here and, finally, present some conclusions. 
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Validity: Item Generation in Context 

Although Tyler (1934) did not stress validity in his writing, his careful thinking 
about the interdependencies among different parts of the assessment design 
process suggests that he must have thought that the way a measurement 
instrument was designed had implications for what could be concluded from 
an analysis ofthe scores. Those interdependencies and implications for valid­
ity are now widely recognized (e.g., Bennett & Bejar, 1998; Embretson, 1983; 
Haertel, 1985; Kane, 1992; Messick, 1994; Mislevy, Steinberg, & Almond, 2003; 
Nichols & Sugrue, 1999) but were not emphasized in the Cronbach and Meehl 
(1955) conception of construct validity. Indeed, Cronbach and Meehl were crit­
icized at the time by Loevinger (1957) for not paying attention to item constmc­
tion. Although Cronbach and Meehl argued that validation was not different 
than the scientific process, they paid less attention to the instrumentation or 
the specifics ofthe composition ofthe test, including its content, as they were 
primarily interested in the nomothetic span of a test, or the relationship of 
scores ofthe test in question with those of other tests or with external informa­
tion. This meant that validation was seen as a process that occurs after the 
assessment has been completed. They gave as an example the development 
of the Strong Vocational Inventory Blank (SVIB), which, like many leading 
instruments at the time, was based on empirical keying. Empirical keying 
refers to scoring responses with reference to the criterion of interest (Mumford 
& Owens, 1987), but the scoring key is derived empirically and the content of 
the items is not obviously linked to the construct. For the SVIB, this meant that 
there was no a priori accounting of the content of each item. The same items 
were scored with different keys for each possible occupation. Although from a 
pragmatic point of view the purely empirical approach works very well, in the 
end there is not an explanation for why it works. 

Loevinger (1957) objected to the actuarial determination of scoring keys and 
argued that "the dangers of pure empiricism" in determining the content and 
scoring of a test should not be underestimated. She concluded that "the problem 
is to find a coherent set of operations permitting utilization of content together 
with empirical considerations" (p. 658). The "coherent set of operations" to which 
she referred seems to call for the linking ofthe content and empirical attributes 
of items. This theme was echoed by Glaser (1963) some years later when he intro­
duced the notion of criterion-referenced testing as a means for understanding the 
meaning and inferences that could be drawn from a score without the require­
ment of a norming population. Reflecting on that article years later, Glaser 
(1994) noted that "systematic techniques needed to be developed to more ade­
quately identify and describe the components of performance, and to determine 
the relative weighting of these components with respect to a given task" (p. 9). 

Embretson (1983) expanded on the importance ofthe composition of a test; 
that is, understanding the "components of performance" down to the item level 
by means of cognitive models of performance. She labeled that aspect of validity 
construct representation and viewed it as complementary to nomothetic span, or 
the set of relations of scores on the test being validated and scores in other tests 
or external variables, which was the focus of Cronbach and Meehl's (1955) argu­
ment. Whereas Glaser (1963,1994) and Embretson (1983) were more concerned 
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with the composition ofthe test, as noted by Messick (1981), Loevinger (1957) 
advocated, in addition, that items be written so as to challenge the construct; 
specifically, "the initial item pool is deliberately expanded to include items rele­
vant to competing theories . . . as well as items theoretically irrelevant to the 
construct" (p. 658). In other words, Loevinger advocated attempting not only to 
base items on a theory but also to falsify the theory behind the content of the 
items in the process. This, even today, is a very avant-garde idea that is well 
aligned with specific conceptions of philosophy of science, especially in connec­
tion with psychology (Meehl, 1990).1 

The perspective expressed earlier, that item generation should not be seen 
as the mass production of items, can now be understood in light ofthe critical 
role that the items can play in the validity of scores. That role is enforcing con­
stmct representation and, through constmct representation, mediating nomo­
thetic span, while providing evidence concerning how well theoretical predictions 
about items have withstood empirical scrutiny. 

Evidence concerning constmct representation can be incorporated as part 
of the validity argument for the assessment as a whole. Kane (1992) and 
Cronbach (1988) proposed an "argument-based approach" to validity and score 
interpretation. Kane (2004) specifically advocated the use of an interpretive 
argument as the mechanism for organizing and structuring the evidence about 
the interpretations of scores and decisions. Kane (2004) saw the approach as a 
pragmatic means to organize validity evidence for score interpretation and not 
as an alternative to construct validation. For example, the emphases in nomo-
logical nets as a means of score interpretation (Cronbach & Meehl, 1955) and 
the idea of constmct representation (Embretson, 1983) are some of the raw 
material for building an argument. Kane (1992) described the general scheme 
based on argumentation theory (Toulmin, Rieke, & Janik, 1984) as follows: 

One (a) decides on the statements and decisions to be based on the test scores, 
(b) specifies the inferences and assumptions leading fi-om the test scores to 
these statements and decisions, (c) identifies potential competing interpre­
tations, and (d) seeks evidence supporting the inferences and assumptions 
in the proposed interpretive argument and refuting potential counterargu­
ments, (p. 527) 

The four-part structure can be thought as the mles of the "validity game" 
and is not prescriptive about the content ofthe argument. For example, the argu­
ment can be formulated before the assessment is developed or after the assess­
ment is developed. For existing assessments or repurposed assessments, an ad 
hoc application is all that can be done. However, for new assessments, formulat­
ing the argument ahead of time so that it can inform the development is sensible. 
Evidence-centered design (Mislevy et al., 2003) is also inspired by a Toulmian 
conception of argument, and, unlike Kane's approach, it is very prescriptive 
about the timing and sequencing of assessment design activities to ensure that 
the argument to be made about eventual scores is well supported. There is not 

^n practice, items designed to challenge the construct would be studied outside the operational 
program. 
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necessarily a conflict between these two approaches. Kane's perspective is appli­
cable to auditing assessments that are already completed. By contrast, evidence 
centered design is oriented to improving the chances of passing an eventual 
audit, so to speak, by, among other things, insuring adequate constmct represen­
tation. Although every aspect ofthe design of an assessment relates to constmct 
representation, the principles by which items are produced are especially critical. 
The challenge for automated item generation work remains how best to incorpo­
rate such principles into the assessment design process. The next few sections 
discuss progress in several domains. 

R e c e n t D e v e l o p m e n t s i n I t e m G e n e r a t i o n 

In this section, we focus on relatively recent literature about item generation in 
different domains. Within each section, we follow the distinctions drawn earlier 
concerning the theoretical basis for item modeling, the approach to instantiation, 
and the psychometric considerations. 

Logical Reasoning 

Reasoning is clearly an important construct in the assessment of admissions to 
higher education (Enright & Gitomer, 1989; Powers & Dwyer, 2003; Powers & 
Enright, 1987) and has been found to be predictive of success in graduate school 
(Kuncel, Hezlett, & Ones, 2001). Until recently, the Graduate Record Exam­
ination (GRE) included a section consisting of two types of reasoning problems, 
analytical reasoning and logical reasoning, for which there was theoretical and 
empirical justification (Chalifour & Powers, 1989; Emmerich, Enright, Rock, & 
Tucker, 1991). One type of reasoning problem can be called deductive, so-
called analytic reasoning (AR) problems; the other type of problem consists of 
inferential reasoning problems, so-called logical reasoning (LR) items. In this 
section, we review the state ofthe art for those two item types with respect to 
item generation. 

The LR item type was studied by Yang and Johnson-Laird (2001) with the 
goal of understanding what accounted for variation in difficulty. A sample GRE 
LR item is shown in Figure 9.1. Yang and Johnson-Laird (2001) postulated three 
potential sources of difficulty for this item type: the complexity of the scenario, 
the nature ofthe stem, and the nature ofthe options. Their analysis of difficulty 
was strongly theoretical in the sense that a specific theoretical perspective, men­
tal model theory (Johnson-Laird, 1983), was the basis of the analysis. They 
reported no previous relevant psychological literature to model the difficulty of 
this item type and proposed instead mental model theory (Johnson-Laird & 
Byrne, 2001) as a means of analyzing the deep stmcture of LR items. A mental 
model can be thought of as a representation of a problem. This idea of a mental 
model is very general because it lends itself to representing a wide variety of sit­
uations, ranging from textual to spatial (Johnson-Laird, 1983). The assumed 
first step in reasoning is to encode or represent the situation, or premise in the 
case of reasoning. Reasoning about that situation consists of enumerating puta­
tive conclusions and attempting to falsify them by means of counter examples 
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Scenario: Children born blind or deaf and blind begin social smiling 
on roughly the same schedule as most children, by about three 
months of age. 

Stem: The information above provides evidence to support which ofthe 
following hypotheses: 

Distractors: 
A. For babies the survival advantage of smiling consists in bonding 

the caregiver to the infant. 
B. Babies do not smile when no one else is present. 
C. The smiling response depends on an inborn unit determining a 

certain pattern of development. 
D. Smiling between persons basically signals a mutual lack of 

aggressive intent. 
E. When a baby begins smiling its caregivers begin responding to it 

as they would to a person in conversation. 

Figure 9.1. Sample LR item from Yang and Johnson-Laird (2001). From "Mental 
models and logical reasoning problems in the GRE," by Y. Yang and P. N. Johnson-
Laird, 2001, Journal of Experimental Psychology: Applied, 7, 308. Copyright by 
Educational Testing Service, All rights reserved. Reprinted with permission. 

until one or more putative conclusions withstand the challenge. For example, a 
correctly encoded premise ofthe form 

The printer is turned off or broken, or both 
can be represented as: 

A the printer is off 
B the printer is broken 
A B the printer is off and broken 

Conclusions or inferences, given this premise, can be evaluated. For example, 
the conclusion 

The printer is on and ok 

clearly is inconsistent with the text. However, 

The printer is on and broken 

is somewhat consistent because it refers to a broken printer, albeit it is not a 
valid conclusion. Thus, according to mental model theory, inferential reasoning 
is a matter of representing the premises and then testing conclusions against 
the premise as represented. 

Of course, in practice, items are stated in natural language. Therefore, above 
and beyond the reasoning that these problems require, they also require a read­
ing comprehension process to encode the text of the problem so that reasoning 
can proceed. This is important for constmct representation purposes because a 
skill besides the one of central interest is required in order to elicit the evidence 
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of central interest, reasoning in this case. It is not surprising that in factor ana­
lytic studies that have been carried out on GRE scores, the LR scores load on the 
verbal factor (Bridgeman & Rock, 1993). The fact that skills other than the cen­
tral one mediate performance is unavoidable and needs to be handled carefully 
to avoid reducing constmct representation or inadvertently advantaging or dis­
advantaging some students. Yang and Johnson-Laird (2001) analyzed 120 GRE 
items and classified them into three categories: inferential problems in which the 
task requires one to decide "which option is a conclusion the text implies, or 
which option implies a conclusion in the text"; missing-premise problems, "in 
which individuals have to determine which option states a missing premise in 
the text"; and weakness problems "in which individuals have to identify which 
option states a weakness in an argument in the text" (p. 309). 

Mental model theory predicts a difference in difficulty between inferen­
tial and missing-premise problems; namely, that identifying a missing premise 
requires more complex reasoning and therefore should lead to more difficult 
items, other things being equal. Yang and Johnson-Laird (2001) conducted four 
experiments and identified three sources of difficulty: (a) the nature ofthe logical 
task, confirming that, as predicted by mental model theory, inferential problems 
are easier than missing-premise problems; (b) the nature ofthe distractors, con­
firming that distractors that are consistent with the text would be harder to 
reject that those that are inconsistent with the text; and (c) the nature ofthe con­
clusions, in which the evaluation of valid conclusions was found to be simpler 
than evaluation of incorrect conclusions. 

Rijmen and De Boeck (2001) also examined reasoning, albeit not in a GRE 
or testing context. The investigation is relevant in light of the results just pre­
sented. They contrasted two theoretical perspectives to deductive reasoning: 
mle theories (e.g., Braine, 1978; Rips & Conrad, 1983) and mental model theory 
that was applied to the GRE by Yang and Johnson-Laird (2001). Rijmen and De 
Boeck pointed out that although different rules appear to require different 
degrees of effort, and therefore contribute differentially to difficulty, the theory 
itself does not provide the means for estimating a priori what that difficulty is. 
From a validity perspective, this is not ideal because it still leaves unanswered 
the question as to why different mles are more difficult (Revuelta & Ponsoda, 
1999, p. 247). By contrast, as noted by Rijmen and De Boeck, mental model 
theory is more amenable to a priori predictions because of how the reasoning 
process is framed; namely, as requiring to represent situations or premises 
by enumerating mental models and then falsifying potential deductions. 
Psychologically, this entails specification of a space of possibilities and a search 
of that space, and aspects of that process could serve as the basis for theoretical 
predictions of difficulty a priori. 

Research on the LR item type is clearly in its infancy, but it is off to an excel­
lent theoretical start and serves to illustrate how theory can guide item constmc­
tion. For example, if we were contemplating augmenting the difficulty of logical 
reasoning tests by means of new item types, it could be possible to evaluate can­
didates and perhaps mle out some of them purely on the basis of a theoretical 
analysis. Yang and Johnsoln-Laird (2001) focused, appropriately, on an account­
ing of psychometric attributes: difficulty. For item modeling purposes, there 
would have to be attention to how to instantiate items that embody a theory of 
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difficulty. LR items are based on natural language consisting of the scenario, 
which sets the context, and the stem and corresponding option set. To fully model 
LR items, a taxonomy of appropriate contexts would be needed. Given such a tax­
onomy, it may be possible to electronically search text databases for instances of 
relevant text that would serve as raw material for scenarios. Although the state 
ofthe art in text search for item modeling is, itself, nascent, significant progress 
has been made in the last few years, as discussed in a subsequent section. In the 
Yang-Johnson-Laird research, the items were "undressed" to uncover their deep 
logical nature. Whether text search is sufficient to locate scenarios that lend 
themselves to LR items is an empirical question. Literal search may not be effi­
cient or sufficient to identify candidate scenarios. For example, if we wanted to 
create isomorphs ofthe sample problem given in Figure 9.1, it would be ideal to 
search for text that embodies the following premise: Animate object of class Cl 
and animate objects of class C2 exhibit behavior X by the same age. 

If the text database were already encoded in a form that enabled searching 
it by an abstract query of this type, there may be ways to identify text that might 
serve as stimulus material. Even then, the located text would have to be evalu­
ated and possibly modified by item authors before it could be used. Nevertheless, 
it is possible this approach would still result in significant efficiency gains. 

Analytical Reasoning 

The other (former) component of the GRE analytic section is the AR item type. 
Whereas the LR item type is thought to measure informal reasoning, the AR 
item type is viewed as measuring deductive reasoning (Emmerich et al., 
1991). A sample item appears Figure 9.2. This item type was the focus of 
an extensive series of studies at the University of Plymouth (Newstead, Bradon, 
Evans, & Dennis, 2002; Newstead, Bradon, Handley, Dennis, & Evans, 2006). 
The overall structure the item sets is the same. A scenario is always an array 
consisting of at most seven elements (which can be radio segments, floors on a 
building, tracks on a CD, etc.), and the order in which they are to appear. The 
stimulus section introduces restrictions or additional information, in this case as 
to adjacency restrictions between elements ofthe array. Finally, the stem for an 
item is presented by stating, in this case, a specific adjacency condition and ask­
ing the order in which different segments might be played, given the preceding 
restrictions. Several items are generated from a given scenario, and stems are 
classified into (a) possible orders, (b) necessity, (c) impossibility, and (d) impossi­
bility items. 

The team's approach to the problem took advantage of their extensive back­
ground in the psychology of reasoning (Evans, 1989; Newstead, Pollard, Evans, 
& Allen, 1992) and the fact that, in addition to developing a model of difficulty, 
the goal was to generate items as well. They took an admirably ecumenical 
approach to modeling difficulty. One postulated source of difficulty was the 
encoding of item text, i.e., effects, which concern the process the text to get to the 
logical stmcture, which necessarily would need to be part of any accounting of 
difficulty, regardless ofthe theoretical stance. The second source of difficulty they 
postulated was complexity of mles, which would be theoretically aligned with 
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Scenario 
An office building has exactly six floors, numbered 1 through 6 from bottom 
to top. Each of exactly six companies F, G, I, J, K, and M must be assigned 
an entire floor for office space. The floors must be assigned according to the 
following conditions: 

Stimulus 
F must be on a lower floor than G. I must be either on the floor immediately 
above M's floor or on the floor immediately below M's floor. J can be neither 
on the floor immediately above M's floor nor on the floor immediately below 
M's floor. K must be on floor 4. 

Stem 
If G is on floor 5, which ofthe following must be true? 

Options 
(A) F is on floor 1 
(B) F is on floor 3 
(C) I is on floor 1 
(D) J is on floor 6 
(E) M is on floor 2 

Figure 9.2. From Table 1 of "Predicting the difficulty of complex logical rea­
soning problems" by S. E. Newstead, P. Bradon, S. J. Handley, I. Dennis, and 
J. S. B. T. Evans, 2006, Thinking & Reasoning, 12(1), 64. Copyright by 
Educational Testing Service, All rights reserved. Reprinted with permission. 

rule-based approaches to reasoning (e.g., Rips & Conrad, 1983). They also postu­
lated a representational difficulty factor, which would be theoretically aligned 
with the mental model theory we just discussed in connection with LR items. 

The representational emphasis seemed natural, given that think-aloud pro­
tocols were examined early in the project (Newstead et al., 2002) and looked like 
mental models. Moreover, the explicit goal of generating items, not just under­
standing difficulty, also encouraged an approach that was highly representa­
tional. The project was successful in that they were able to effectively predict 
the difficulty of operationally administered items. They cite correlations ranging 
from .55 to .76 for the difficulty of items produced by their algorithm and opera­
tional difficulty estimates obtained by Educational Testing Service (ETS) based 
on GRE test takers. (It is important to note that models of difficulty were devel­
oped first on a separate set of items and were applied to newly generated items.) 
Furthermore, the work was theoretically informative with respect to the compet­
ing approaches to understanding human reasoning. Referring to the competing 
models of reasoning, Newstead et al. (2006) concluded that "mental model theo­
rists will take comfort from the finding that semantic informativeness of a rule 
correlated negatively with difficulty... and from a finding that model variability 
score figured in our difficulty models" (p. 88). That is, the fact that difficulty could 
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be predicted on the basis of an a priori analysis consistent with mental model 
theory was supportive of mental model theory. However, they concluded that the 
GRE items are so rich that it is unlikely that a single theoretical accounting of 
difficulty is feasible. 

Unlike the case for LR, in which item generation needs to be assisted by an 
item writer, it appears possible to generate AR items in an automated fash­
ion. The items generated by the Plymouth project were not ready for use as 
generated, however, because the language was removed for modeling purposes. 
Instead, deep or logical stmctures of items were generated, which then had to be 
manually fleshed out in natural language. This left the question of how to "dress" 
such items in an automated fashion once they were generated. Unfortunately, 
the project did not proceed to that stage. However, an independent effort 
addressed the problem in a very general form, namely, how to provide a natural 
language, not necessarily English, facade for such items. Fairon and Williamson 
(2002) developed a system to generate AR items in French, given a deep stmc­
ture from the Plymouth project. They labeled their specific approach finite state 
templates. However, any of a number of approaches could serve equally well 
because natural language generation is a very active area of research (Jurafsky 
& Martin, 2000). 

A full system for AR entails a generation of scenarios from a given context, 
such as office buildings, CDs, radio segments, seating arrangements, and so on. 
Given a context, a range of scenarios are feasible that might vary in their diffi­
culty. For the GRE test-taking population, scenarios with six or seven elements 
(e.g., floors) yield items of an appropriate level of difficulty. However, instantiat­
ing such scenarios and wording them appropriately constitutes its own modeling 
task. A method to model the range of difficulty supported by different scenarios 
needs to be studied on its own but seems feasible in the Plymouth approach. 

What remains to be discussed is the approach to imputing difficulty esti­
mates to the generated items. The approach the Plymouth group took was to 
define difficulty models on the basis of attributes ofthe type mentioned earlier— 
encoding, representational load, and rule difficulty—and develop regression 
equations for predicting difficulty from those attributes for the different item 
types mentioned earlier. Recursive tree regression methods (Breiman, Freidman, 
Olshen, & Stone, 1984), such as those used by Enright and Sheehan (2002), are 
also applicable and offer several advantages, including the possibility of sub­
suming under a comprehensive difficulty model several item types. The gener­
ation of items with specific difficulty entailed a "search and test" procedure 
in which the difficulty of potential items was estimated until an item of the 
desired difficulty was found. 

Figural Reasoning 

Nomothetic theories of intelligence have long postulated a two-dimensional 
model of intelligence consisting of fluid and crystallized intelligence (Cattell, 
1971; Horn, 1972). The distinction was supported by Carroll (1993) in a meta­
analysis of several hundred studies and by an array of nonpsychometric 
evidence, as well (Horn, 2008). According to Horn (2008), fluid intelligence, or 
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reasoning, "is measured by tasks requiring inductive reasoning... It indicates 
capacities for identifying relationships, comprehending implications, and draw­
ing inferences within content that is either novel or equally familiar to all" 
(Horn, 2008, p. 169). The Raven Progressive Test (Raven, Raven, & Court, 2003) 
is a quintessential example of a test that aims to measure fluid intelligence. The 
items in the test consist of a 3 x 3 matrix containing figures that are related in 
a way to be discovered by the test taker. Embretson (2002) conducted a major 
study for this item type. 

As noted previously, nomothetic theories of intelligence for the most part do 
not address, directly, the explicit mles for constmcting items and, as a result, 
are silent regarding the basis for item difficulty and other item attributes (i.e., 
construct representation). This requires a theory of performance at the item 
level. According to Embretson (2002), 

A complete theory would specify how each of the underlying processes 
involved in item solving is influenced by variations in item structures. If vari­
ations among the item structures represent the major processes in item solv­
ing, stronger prediction of item difficulty should be obtained as compared to 
variations that are unrelated to the theory, (p. 221) 

Embretson relied on a cognitive micromodel of performance on the Raven 
postulated by cognitive theorists (Carpenter, Just, & Shell, 1990). The Carpenter 
et al. model assumed one central process, finding correspondences between fig­
ures and inducing relationships. In addition, an executive process to manage the 
process was assumed. The theory was operationalized as two computer programs 
designed to emulate the performance of average and superior test takers by vary­
ing the program's capability on those two postulated skills. 

The application of this model work illustrates a strong theory approach to 
item generation. First, fluid intelligence is well established nomothetically as a 
high-level construct concerned with individual differences in cognitive function­
ing. Second, a cognitive microtheory of performance on tests like the Raven was 
the basis for modeling difficulty. On the basis ofthe Carpenter et al. (1990) 
theory, Embretson (2002) formulated several variables to characterize existing 
items with the intention that these variable serve as predictors of difficulty and 
also as the basis for instantiating items. Some ofthe variables were perceptual 
in nature, which, as we have seen from previous item types, underscores that for 
the assessment of complex constructs difficulty models may need to incorporate 
variables beyond the immediate construct of interest. With a difficulty model 
at hand, the next step was item generation guided by such a difficulty model, 
which was done by means of item structures.2 An item stmcture is the equiva­
lent of an item model designed to instantiate isomorphs. In the case of abstract 
reasoning, as modeled by Embretson (2002), items consist of a 3 x 3 matrix, 
shown in Figure 9.3, in which the last cell ofthe third row is left blank and the 
test taker's job is to identify the correct insertion given a series of choices. Given 
the figural nature ofthe items, it is feasible to develop algorithms for instanti­
ating items from an item structure that can take the form of a matrix, as shown 

2Item structures, like item models, is a label for a formalism useful for item generation. 
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Figure 9.3. A matrix item. 

in this example in which the figures (circles, triangles, and rectangles) appear at 
three sizes and three levels of thickness. 

A critical aspect of the work is that the difficulty model was formulated in 
terms of variables that could be computed directly from the item stmcture. This 
makes it possible to impute a difficulty estimate by reference to the item stmc­
ture that was used to generate it. The exception to this is the perceptual features, 
which were judged rather than computed. It is important that the difficulty 
model was tested on newly generated items. To test the model, five items were 
generated for 30 stmctures designed to span a range of difficulty. Altogether 150 
newly generated items were used to test the theory. The estimated difficulty 
using one- and two-parameter item response theory (IRT; Lord, 1980) models 
and the discrimination parameter from the two-parameter logistic (2PL) results 
were regressed on the item structure, the perceptual features, and the position 
of the key in the array of possible answers. A multiple correlation of .89 was 
obtained for each set of difficulty estimates. Embretson (2002) did not explicitly 
analyze the within-item structure variability, which judging by the plots she pre­
sented was not negligible. The ratio of between-item structure variability to 
within-item stmcture variability would be an informative statistic for analyses 
of this type. 

Figural abstract reasoning provides an opportunity to implement strong 
theory approach to item generation and illustrate the potential interplay of psy­
chometric and psychological models. Other examples exist (Arendasy, 2005; 
Bimey, Halford, & Andrews, 2006; Pascual-Leone & Baillargeon, 1994; Primi, 
Zanarella-Cruz, Muniz-Nascimento, & Petrini, 2006). 

Verbal Comprehension 

It is possible to envision automatically generating items that assess vocabulary 
(Scrams, Mislevey, & Sheehan, 2002), listening comprehension (Huang, Liu , & 
Gao, 2005), verbal analogies (Bejar, Chaffin, & Embretson, 1991; Wesiak, 
2003), and sentence-based items (Bejar, 1988; Higgins, 2007; Sheehan & 
Mislevey, 2001; Sheehan, Kostin, & Futagi, 2005). However, generating reading 
comprehension items requires a different approach. As was the case for the LR 
items reviewed previously, a critical component of the reading comprehension 
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items is the passage to be read. The second component, of course, is the questions 
that assess the comprehension ofthe text. Thus, modeling reading comprehen­
sion items requires modeling ofthe passage and modeling ofthe questions asked 
about the passage. By modeling ofthe passage, I mean to posit a set of textual 
attributes that can be used to characterize the text with respect to a specific 
model reading comprehension. For example, Gorin and Embretson (2006), citing 
ETS internal manuals, stated that "the difficulty ofthe reading comprehension 
items is intended to be based in the passage complexity, not from the difficulty of 
the question itself (pp. 395-396). This assertion implies a specific design goal; 
namely, that the textual attributes ofthe passage should not figure strongly in 
the variability difficulty ofthe items, which is not to say that the level of difficulty 
should not be based on text of suitable complexity. 

The first significant effort to model the assessment of reading comprehen­
sion from a cognitive perspective appears to have been by Embretson and 
Wetzel (1987) and was specifically concerned with item difficulty. They postu­
lated a two-stage process. The first stage, which they called text representation, 
consists of encoding and representing the passage. They proposed a well-known 
model of reading (Kintsch, 1998) as the basis for this stage ofthe process. In this 
model the reader is assumed to iteratively extract a propositional representa­
tion of the passage aided by relevant background knowledge at the disposal of 
the reader. The propositional density of a text is assumed to drive difficulty. The 
second stage, which they called response decision, is concerned with answering 
questions given the passage representation. It too entails constructing a repre­
sentation of the questions contained in the items. The actual mechanism for 
answering items is assumed to involve a process to decide the acceptability of 
each alternative. 

At a high level of detail, this formulation is very compatible with those we 
saw earlier for AR and LR items, especially with respect to the assumption of a 
means of representing the passage, or premise or scenario in the case of LR and 
AR item types, respectively. It probably is an idealized characterization of what 
transpires mentally when taking a reading comprehension test. However, as 
noted by Rupp, Feme, and Choi (2006), reading comprehension in a testing con­
text may not be well described by theoretical formulations ofthe reading process 
because it is a unique form of reading. Nevertheless, from a theoretical perspec­
tive the insufficiency of an off-the-shelf theory to model test behavior is not nec­
essarily fatal. As mentioned earlier, a major advantage of item generation is that 
it enables fine tuning the theoretical underpinning of items as rounds of data col­
lection are accumulated and theoretical predictions are evaluated. 

The study by Gorin and Embretson (2006) is especially informative in that 
it applied variables from the Embretson and Wetzel (1987) study, developed for 
the ASVAB (Armed Services Vocational Aptitude Battery) as well as those from 
the study by Sheehan, Ginther, and Schedl (1999) developed for the TOEFL 
(Test of English as Foreign Language), to GRE items. In a sense, the Gorin and 
Embretson study is an attempt to falsify previous models of reading comprehen­
sion difficulty on an altogether different test and population. The results sug­
gested that approximately a quarter ofthe difficulty variance in GRE items was 
explained by the item attributes from the previous studies (Gorin & Embretson, 
2006, p. 404). When difficulty predictors specific to the GRE, passage length and 
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item format, were added, there was a gain of 6%. It is interesting that the tex­
tual features, such as propositional density, which had previously been predic­
tors of difficulty, did not emerge as predictors of difficulty for the GRE case. That 
is, item-level, rather than passage-level, features were the key to accounting for 
difficulty for GRE items. Although at first sight this is at odds with the assertion 
to the contrary cited earlier, it need not be. The empirical finding may reflect 
that GRE text for passages is chosen to be equivalent in complexity, or that the 
item sets that survive pretesting are homogeneous with respect to textual char­
acteristics, such as propositional density, ofthe stimulus material. 

Fitting models based on different tests is a form of model challenge and 
is to be applauded. However, it is also the case that the ASVAB and TOEFL 
have very different purposes and populations. Expanding on Rupp et al.'s (2006) 
point, not only is the reading process as part of testing a very specialized form of 
reading, but the reading required by different assessments could well be differ­
ent, and, therefore, the same models of difficulty perhaps should not be expected 
to generalize completely. Again, the goal should be to arrive at the appropriate 
model, drawing as necessary from existing theories and models but also taking 
into account the specifics ofthe assessment. Instantiating reading comprehen­
sion items is not at the point at which automated generation is feasible. Instead, 
what is feasible is to assist test designers to author such items with increased 
efficiency and certainty as to their psychometric attributes. The first step in that 
process is to be able to locate suitable text for the stimulus. Not surprisingly, the 
increasing availability of text sources online is the key to that process. In addi­
tion, a mechanism is needed to locate potential stimuli in the vast databases of 
text that are available. The idea for such a system, SourceFinder, first emerged 
in a broader context (Katz & Bauer, 2001) and has since become increasingly 
optimized for the specific purpose of locating stimuli for reading comprehension 
item sets (Passonneau, Hemat, Plante, & Sheehan, 2002; Sheehan, Kostin, 
Futagi, Hemat, & Zuckerman, 2006). Before the system can work, it is neces­
sary to "train" filters that navigate the vast set of possible text. For training 
passages, a universe of potential passages is first defined as the articles in a col­
lection of journals that are known to have yielded passages in the past. Then 
articles that are known to be a suitable source and articles that are believed to 
be unsuitable are gathered, and that designation becomes the dependent vari­
able in an analysis designed to predict suitability of a specific text. Predictors, or 
independent variables, for such an analysis need to be defined and precomputed 
so that the resulting prediction equation can be used to quickly locate poten­
tially suitable articles. The success of the system is evaluated in terms of 
whether more suitable sources are located with the filtering on. Sheehan et al. 
(2006) concluded that indeed this was the case. 

Mathematics 

We have left mathematics for last because among efforts to operationalize item 
generation it has the longest history. The progress in mathematics has been sig­
nificant on several fronts. In fact, there has been so much research that we can 
hardly do it justice in the limited space we have. In this section, I discuss in turn 
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theoretical underpinnings, modeling of psychometric attributes, and approaches 
to instantiation. 

The resurgence of cognitive psychology mentioned previously had an effect 
on the conceptions of problem solving, and specifically K-12 mathematics prob­
lem solving. These new conceptions aimed to improve learning through a deeper 
understanding ofthe mental problem-solving process or to diagnose underperfor-
mance (Brown & Burton, 1978; Hall, Kibler, Wenger, & Truxaw, 1989; Mayer, 
1981; Riley, Greeno, & Heller, 1983). The enabling of transfer, for example, was 
a major objective. These conceptions were general enough to be applicable not 
just to school problem solving but also to conventional admissions assessments 
(Bejar, Embretson, & Mayer, 1987). 

For example, Riley et al. (1983) presented a detailed analysis of math word 
problems in elementary grades. At the center ofthe approach is the idea of a 
schema (Norman & Rumelhart, 1975). Schemas play a representational role, 
just like mental models discussed in connection with reasoning item types. 
Problem solving is seen as reducing a problem statement to its bare essentials— 
that is, assigning it a schema. They refer to this step as comprehension. The next 
step in the process is to map the conceptual representation to procedures. The 
last step is to execute those procedures to produce an answer. 

The idea of schemas is quite general and more recently has been seen as 
playing a role in the characterization of expertise in general (Bransford, Brown, 
& Cocking, 1999). The highest levels of expertise are described as having access 
to a wider range of schemas to draw from, as well as the ability to use them in 
ways to solve novel problems. A recent line of research on schema-based transfer 
instmction (Fuchs, Fuchs, Finelli, Courey, & Hamlett, 2004) has suggested that 
focusing instruction on schemas appears effective to improve mathematics 
school achievement, including for students with disabilities. Characterizing a 
student's schema by means of a sorting task of math problems was studied 
experimentally for its potential in admissions testing (Bennett & Sebrechts, 
1997). Comprehensive discussion of schemas in problem solving and cognition 
can be found in Marshall (1993), Singley (1995), and Singley and Bennett (2002). 

Riley et al. (1983) found that semantic stmcture was a difficulty factor in the 
context they studied, elementary mathematics. By semantic structure, Riley et 
al. meant the type of word problem (e.g., change, equalize, combine, compare). 
These types had different levels of difficulty in the population they studied. Even 
though detailed models were developed to simulate performance on these prob­
lem types, Riley et al. did not propose a theoretical explanation for the ordering 
of difficulty. Moreover, they pointed out that within each class of problems 
there was variation in difficulty. Although a descriptive account (Mayer, 1981) 
is necessarily the first step in building a theoretically based difficulty model, a 
more satisfying accounting would explain the difficulty among subtypes of 
problems from variables at a finer grain size than problem type. For example, 
the schemas the different problem types call for could be inherently more com­
plex because they involve more quantities and more, or more complex, relation­
ships among those quantities. Such an account was subsequently provided by 
Riley and Greeno (1988). 

A further consideration is that measurement constructs are complex. A 
full accounting of variability in the psychometric attributes of items is likely to 
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require going beyond the constmct of immediate interest. For example, the cur­
rent National Council of Teachers of Mathematics (2006) standards call for com­
munication as part ofthe definition of mathematics proficiency. The difficulty of 
items that call for exhibiting communicative ability, such as justifying a solu­
tion to a problem, will not be simply a matter ofthe semantic nature ofthe prob­
lem. More generally, the increased emphasis on more open-ended performance 
means that the response process is not as structured as is the case of multiple 
choice items and necessarily (but see Graf, in press) increases the complexity of 
the target construct. 

Embretson (1995) took advantage ofthe available theorizing on mathemat­
ics problem solving to model the difficulty of SAT mathematics word problems. 
She started with disclosed SAT items as classified into a dichotomy consisting of 
"rate problems" and "part problems." The rate problems were further subdi­
vided into seven categories and the part problems into three categories. Three 
"isomorphically equivalent" instances were written for each ofthe 10 categories 
and rated on three dimensions: linguistic knowledge (e.g., number of words), 
schematic knowledge (e.g., number of equations), and strategic knowledge (e.g., 
determining whether a transformation was necessary). The correlations with dif­
ficulty ranged from .14 to .64. Strategic knowledge was the least correlated with 
difficulty, whereas reading level was the most correlated. Thus, it was possible to 
establish a link between the postulated difficulty factors and estimated difficulty. 

Embretson's (1995) purpose was to assess learning potential rather than 
item generation per se. By contrast, Enright and Sheehan (2002) conducted an 
investigation to clarify the constmcts assessed by quantitative items on gradu­
ate admissions tests. In one study they created items for two content areas: 
rate and probability. In each content area, they crossed three features at two 
levels: context (i.e., cost vs. distance-time-rate), complexity (i.e., the number of 
constraints needed to be kept in mind), and "algebraicness" (i.e., whether the 
problem required manipulation of variables). The crossing of the three binary 
features yielded eight item models, and six instances were generated for each, 
yielding 48 items for each content area. They used regression trees (Breiman 
et al., 1984) to regress empirical difficulty on the three features and were able to 
recover the generating principles for the most part. They also analyzed several 
existing item pools by regressing difficulty on item features. In such pools, the 
generating principles are not necessarily manipulated, and therefore the results 
need to be interpreted carefully. For example, a certain feature may not emerge 
as a difficulty predictor, but that does not mean that it is an unimportant 
item design principle. We saw, for example, with reading comprehension that 
propositional density did not emerge as a predictor of difficulty in GRE items, 
whereas it had been so in other contexts. In general, whenever psychometric 
attributes of items from existing tests are analyzed, the fact that some content 
item attributes do not emerge as predictors of psychometric attributes should 
not be taken to mean that the variable is unimportant for item generation pur­
poses. By the same token, not all the attributes that emerge from the analysis of 
existing items as predictors of psychometric attributes should necessarily be 
kept for the generation of future items. For example, careful thought should be 
given to the appropriate level of verbal knowledge required to mathematics 
problems. 
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The absence of a full theoretical accounting of constmct representation for 
all item types does not mean that item generation cannot proceed. An alternative 
strategy is to use item generation as a means of building a more complete theo­
retical account from the ground up, one item at a time, so to speak, with the help 
of item modeling. This strategy would be applicable in the case in which the 
assessment already exists as well as for new assessments. Recent work with the 
GRE (Graf, Peterson, Steffen, & Lawless, 2005) is an example of the strategy, 
which Graf, Peterson, Saldivia, and Wang (2004) called retrospective. 

The motivation for the work was the mcreased demand for items needed to 
preclude preknowledge of test content. By supplementing the existing pool of 
items with instances produced by item models, the goal was to reduce the expo­
sure of each item. That is, with more items in circulation, each item is seen by 
relatively fewer students. The approach was very simple: Existing operational 
items became the basis of creating item models. Each GRE item already in the 
pool has survived scrutiny and therefore could serve as the basis for generating 
more items like it. Moreover, each such operational item has been calibrated, 
meaning that psychometric parameter estimates had been obtained previously 
as part ofthe operational-testing program. The goal of this effort was to create 
an item model that would generate isomorphs, that is, items intended to be 
exchangeable with the source item. The generated items would be calibrated 
upon generation by inputting the psychometric attributes of the item model, 
which in this case correspond to the item parameter estimates of the item 
model, to each instance of the item model. Item models were authored by the 
Mathematics Test Creation Assistant (Singley & Bennett, 2002). The designer 
creates a model by imposing constraints on variables that have been created to 
manipulate the surface realization of items based on the model. Item models 
were written with the goal of generating as much surface variation as possible 
while holding difficulty as constant as possible, so that it would be reasonable 
to impute the psychometric parameters ofthe source item to every instance. 

That is, the "theory" in this case is that experienced test developers can 
author item models capable of producing isomorphic instances. This is a bottom-
up, weak theory approach, in which the goal is to hold the psychometric attri­
butes constant and learn from cases in which this is not the case. (By contrast, in 
most ofthe studies we have reviewed the approach is top-down and the goal is to 
account for variability among classes of item by means of a theoretically stronger 
approach, such as a cognitively based difficulty model.) To test the theory, sev­
eral dozen item models based on operational GRE items were written and tested 
as part ofthe operational GRE testing program. Specifically, 10 instances of each 
item model were generated and assigned at random to samples of test takers 
during several administrations of the GRE. The relative position of the iso­
morphs was held constant to control position effects (Kingston & Dorans, 1984). 
The results are presented in Graf et al., 2004, 2005. 

The psychometric attributes of model instances based on this design can be 
compared directly because instances are assigned at random and position effect 
is controlled for. Although the item models were successful for the most part, a 
few departed from the expectation. This is an informative outcome because the 
authors were very experienced test developers. Clearly, even experienced test 
developers could not anticipate all the sources of difficulty. Hypotheses were 
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formulated for such departures and revised models created to incorporate those 
hypotheses. Generally, the revised item models yielded instances homogeneous 
in their psychometric attributes. In effect, with each round stronger theory was 
applied, illustrating the iterative process of theoretical refinement possible in 
the context of item generation. 

Whereas Graf and her colleagues specifically tested the assumption of iso-
morphicity, Bejar et al. (2003) took isomorphicity for granted and instead stud­
ied the feasibility of substituting first-generation item models for operational 
items in an experimental GRE adaptive test. On the basis ofthe results by Graf 
and her colleagues, it can be assumed that isomorphicity was not completely sat­
isfied. Bejar et al. (2003) referred to this approach as "on the fly" adaptive testing 
because, in principle, an adaptive system can call on an item model and generate 
an item on the spot rather than retrieving it from a database. The first-generation 
item models based on operational GRE items were substituted for a portion of 
the items in a GRE adaptive test pool and administered to volunteers who had 
previously taken the GRE with a system that emulated the operational adaptive 
test in all respects. The design ofthe study compared the previous operational 
scores with the score obtained based on the experimental system. Because the 
pool contained both items and item models and the administration was adaptive, 
the scores were based on responses to items and instances of item models. For 
most cases, at least one half of the test consisted of item model instances. The 
psychometric parameters ofthe instances were obtained by imputation from the 
operational item parameters estimates that had served as the basis for the item 
model, but attenuated by means of expected response functions A key result from 
the investigation was that the correlation between the operational GRE score 
and the on-the-fly score was as high as the correlation between GRE scores 
obtained from students retaking the GRE, suggesting that in practice there was 
little degradation in precision of measurement due to the use of item models even 
when it was likely that isomorphicity was not completely satisfied. 

Graf et al (2004) also discussed item modehng in a prospective fashion, that 
is, for assessments that are being developed (Shute, Graf, & Hansen, 2005). The 
essence of this approach is to carefully model distractors to correspond to preva­
lent student misconceptions (Graf, 2008). Graf also discussed the possibility of 
associating instructional feedback with each distracter, as did Morley et al. 
(2004). These extensions of item models contemplated by Graf have not been 
extensively tested but are straightforward extensions of item models that could 
be useful in an instructional context. 

The modeling and instantiating infrastructure is, understandably, better 
developed for mathematics than for content domains. The Mathematics Test 
Creation Assistant (MTCA) has been in use at ETS for some time (Singley & 
Bennett, 2002) and continues to be improved through additional flexibility 
while more powerful systems are being considered (Deane et al., 2006; Deane 
& Sheehan, 2003). Possible or ongoing extensions ofthe MTCA include the pos­
sibility of providing instance-specific feedback. In addition, it is possible to inte­
grate automated scoring of quantitative responses from generated free response 
items. In this case, in addition to generating the item, the item model generates 
an instance-specific scoring key to be applied by the scoring engine. A further 
area of progress is rendering instances in different languages. A prototype for 
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Japanese and Spanish has been developed (Higgins, Futagi, & Deane, 2005). 
Multilingual applications appear to be an area of high interest judging by the 
several efforts identified as part of this review (Conejo et al., 2004; Strotmann, 
Ng'ang'a, & Caprotti, 2005). 

Conclusions 

I hope to have delivered on the promise implied by the chapter's title. However, 
I also hope to have made clear that item generation is central to the validity argu­
ment in support of an assessment. Unless the basis for test specifications, espe­
cially content specifications, is explicated in terms of the target constmct, for 
practical purposes the test as implemented defines the constmct. For example, 

. verbal ability has at times been defined, by default, as what tests described as 
verbal measure (Hunt, 1978). This is rather circular and not much different 
from Boring's (1923) assertion that "intelligence is what the tests test" (p. 5). 
Constmct validation as framed by Messick (1989), but especially demonstrating 
constmct representation (Embretson, 1983), is key to breaking that circularity. 
Nevertheless, the technical manuals of many assessments address in detail the 
statistical specifications of such tests but are typically silent about the rationale 
for content specifications. However, developing an assessment requires a larger 
investment than in the past, and the assessment can be expected to have a much 
shorter life span. Therefore, it makes sense to approach the development of an 
assessment with as complete an explication of the target constmct as possible 
and then approach the development as an iterative design effort. Item genera­
tion is a tool in that effort. 

The foregoing review has been necessarily selective due to space limitations. 
However, a reasonable conclusion is that there has been palpable progress in the 
application of item generation to a wide range of domains. The fact that many of 
the efforts we examined are closely aligned with developments in validation and 
assessment design augurs well for the conception of item generation as the pro­
duction of items in concert with the validity argument we hope to make about 
scores. The review of psychometric considerations suggests that item modeling 
does not present insurmountable psychometric problems. Indeed, progress in 
that area has been significant. This leaves as the central theme for an item-
generation research agenda the theoretical basis for item generation, which 
takes us back to Cronbach and Meehl (1955), who early on stressed the equiva­
lence of validation with the process of scientific theory building and testing. 
Although they did not emphasize construct representation, I do not think they 
would have objected to extending their language to be applicable to construct 
representation. I believe the review suggests that item generation by means of 
item models, item structures, and similar approaches is a useful tool to ensure 
construct representation, which as an added bonus can be the means of effi­
ciently producing already calibrated items. That is, item generation needs to 
be embedded in a larger framework of assessment design, such as evidence-
centered design (Mislevy et al., 2003), cognitive design systems (Embretson, 
1998), or some other comprehensive assessment design framework (e.g., Wilson, 
2005) rather than being treated as an independent process. 
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One insight from the foregoing review is that no single off-the-shelf theory 
is likely to be sufficient to model test behavior. The testing situation is unique, 
and it is unlikely that generic theories would be concerned with the minutiae of 
test behavior. One implication is that, at best, the designer ofthe assessment is 
able to draw from existing theories. However, the designer needs to engage in a 
significant amount of theorizing as well. (For an example of this process, see 
Janssen & De Boeck, 1997). That is, for practical purposes, the target construct 
entails a theory and, like all theories, needs to be tested and refined or dis­
carded. The universe of relevant observables, in the simplest case, is the item 
models that collectively are intended as the means for eliciting evidence that 
responses are a function ofthe postulated constmct. The success of a theory cast 
as a set of item models can be formulated as the extent to which between-item 
model variability is accounted for and the extent to which within-item model 
variability is held to a minimum. The within-model variability is relevant theo­
retically but also psychometrically (Macready & Merwin, 1973; van der Linden 
& Glas, 2007, p. 821). Sizable within-model variability attenuates the psycho­
metric information that the item model yields. In addition, it suggests that the 
theoretical accounting is lacking in some respects. By contrast, an accounting of 
between-item model variability is primarily of theoretical interest. What consti­
tutes an adequate accounting of between-item model variability is evaluated no 
differently than is any other theory. Is there a more parsimonious accounting? 
Are there competing accountings that work equally well? Attempting to answer 
these questions is likely to improve the validity argument for the assessment. 
However, provided within-item model variability is small, the absence of a full 
theoretical accounting of between-item model variability is not an impediment 
to item generation, but, of course, under those circumstances the claim of con­
struct representation would be weakened. 

In this review, for the most part, I reported on "ability" testing in which most 
of the work has taken place relatively recently. For earlier reviews, see Bejar 
(1993) and Pitoniak (2002) and a book dedicated to item generation (Irvine & 
Kyllonen, 2002). In an instructional context a relevant means of assessing con­
struct representation is the extent to which improvements in performance can 
be attributed to relevant instruction (D'Agostino, Welsh, & Corson, 2007). For 
personality tests (Johnson, 2004), science tests (Solano-Flores, Jovanovic, & 
Bachman, 1999), or situational tests (Lievens & Sackett, 2007, a somewhat dif­
ferent set of considerations would apply. The "psychometrics of item modeling" 
has also received attention (for overviews, see Bejar, 2008; Embretson and 
Yang, 2007). 
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Modeling the Effect of Item Designs 
Within the Rasch Model 

Rianne Janssen 

In this chapter, a random-effects extension of the linear logistic test model 
(LLTM; Fischer, 1973, 1983) is proposed that allows modeling the effect of 
item design matrices within the Rasch model. The item designs can refer to an 
item groups design or an item features design. The estimation ofthe resulting 
crossed random-effects model is discussed, as well as related models within 
item response theory (IRT). As possible fields of application for models with 
random-item effects, domain-referenced testing and construct representation 
research are discussed and illustrated with an example. Another field of appli­
cation is the domain of automated item generation, which is discussed in other 
chapters ofthe present volume. 

Nomothetic Span and Construct Representat ion 

In her review of constmct validity, Embretson (1983) distinguished two types of 
constmct validation research: nomothetic span and constmct representation. 
Nomothetic span is concerned with the relationship of the test with other vari­
ables. Studies on nomothetic span are typically offered as the primary data to sup­
port constmct validity for psychological and educational tests. Depending on the 
type of relationship, various types of validity can be discerned, such as conver­
gent, differential, and predictive validity. Construct representation is concerned 
with identifying the theoretical mechanisms that underlie item responses, such 
as information processes, strategies, and knowledge stores. The goal of constmct 
representation research is task decomposition. It is concerned with task variabil­
ity rather than subject variability. 

The two types of constmct validation research generally refer to two types of 
test constmction. In a nomothetic span study, the main purpose ofthe test is to 
provide a measure ofthe examinees' proficiency on the underlying variable that 
the test is designed to measure. From a modeling point of view, the items of such 
a test are considered to be some representative sample from the tested domain, 
although the test may be designed according to an item specification table to 
ensure the content validity ofthe test. In a constmct representation study, the 
focus is not so much on measuring differences between examinees but on inves­
tigating whether the test performance depends on item features that are related 
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to the cognitive processes that are involved. One way to study the cognitive com­
ponents of a test is to manipulate the item characteristics ofthe items in the test. 
Consequently, the item design or test design (Embretson, 1985) becomes a criti­
cal part ofthe test. 

It is the purpose of this chapter to present a psychometric model in which 
the study ofthe nomothetic span and the constmct representation ofthe tested 
domain can be combined. The model describes the differences in test perform­
ance among the examinees and tests the influence of the factors in the item 
design on the response behavior. In this model, the explanation of the item 
responses is complementary to the measurement of individual examinees. The 
proposed model is not the only possible model that allows for this combined 
approach. For example, De Boeck and Wilson (2004b) described other psycho­
metric models as well. 

Before giving a formal presentation of the model, an example is given to 
illustrate the approach. The example is analyzed further on in the chapter. 
After the presentation of the example, two different types of item designs are 
distinguished. 

An Illustrating Example 

Vansteelandt (2000) studied individual differences in verbal aggression, making 
use of a behavioral questionnaire. All the 24 items in the questionnaire referred 
to verbally aggressive behavior in a frustrating situation. For example, one item 
is "A bus fails to stop for me. I would curse." The possible responses were "yes," 
"perhaps," or "no." The data were dichotomized with a 0 for the "no" response and 
a 1 otherwise. 

The questionnaire was constructed according to a specific item design with 
three item features. The first item feature was the behavior mode. A differenti­
ation was made between two levels: wanting to do (i.e., wanting to curse, want­
ing to scold, or wanting to shout) and actually doing (i.e., cursing, scolding, or 
shouting). The reason for the distinction was the possibility of response inhibi­
tion in verbally aggressive behavior: One does not always do what one might 
want to do. The second item feature was the situation type. This factor had two 
levels as well: situations in which someone else is to blame (e.g., "I miss a train 
because a clerk gave me faulty information") and situations in which oneself is 
to blame (e.g., "the grocery story closes just as I am about to enter"). The reason 
for the inclusion of this factor was the expectation that people display more verbal 
aggression when someone else is to blame. The final item design factor was the 
behavior type with the levels curse, scold, and shout. Summarizing, a 2 x 2 x 3 
item features design was used. There were two situations in each cell, leading 
to 24 items in total. The items were presented to the respondents in random 
order. Table 10.1 gives an example ofthe items from an other-to-blame and a 
self-to-blame situation. 

When analyzing this type of questionnaire, one can ask two questions. First, 
are there systematic individual differences and to which other variables are they 
related (nomothetic span)? Second, in what way does the response behavior 
depend on the factors in the item design matrix (construct representation)? 
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Table 10.1. Items From an Other-to-Blame and a Self-to-Blame Situation From the 
Verbal Aggression Questionnaire (K. Vansteelandt, 2000) and Their Corresponding 
Values in the Q-Matrix 

Item Do 
Other-

to-blame Curse Scold Intercept 

I miss a train because a clerk 
gave me faulty infonnation. 

I would want to curse. 
I would want to scold. 
I would want to shout. 
I would curse. 
I would scold. 
I would curse. 

The grocery store closes just 
as I am about to enter. 

I would want to curse. 
I would want to scold. 
I would want to shout. 
I would curse. 
I would scold. 
I would curse. 

0 
0 
0 
1 
1 
1 

0 
0 
0 
1 
1 
1 

0 
0 
0 
0 
0 
0 

1 
0 
0 
1 
0 
0 

1 
0 
0 
1 
0 
0 

0 
1 
0 
0 
1 
0 

0 
1 
0 
0 
1 
0 

Note. Data from Vansteelandt (2000). 

Two Types of Item Designs 

When studying differences among items, two types of item designs can be distin­
guished: an item groups design and an item features design. The distinction 
between the two is in line with the distinction between an analysis of variance 
(ANOVA) design and a regression design. In an item groups design, the items of 
a test can be partitioned in different subsets, each referring to a different popula­
tion of items. As an example, consider a test for reading comprehension in French 
for nonnative students in Grade 8 (Janssen et al., 2005). The test was designed 
according to the common European framework for languages (Council of Europe, 
2001) and measures its first three stages in language learning. For reading com­
prehension these three levels differ in the type of texts the language learner is 
able to understand: Level Al refers to simple sentences, Level A2 to simple texts, 
and Level Bl to texts concerning daily life. Figure 10.1 presents the distribution 
ofthe item difficulty parameters for the three groups of items in the test. When 
modeling the item groups design of the test, the differences across levels in the 
distribution ofthe items are studied. 

In an item features design, each item is scored on one or more factors, each 
of which represents the item's position on an underlying theoretical variable. As 
an example, the items from a geometric analogy test can differ in encoding com­
plexity and transformation complexity (e.g., Mulholland, Pellegrino, & Glaser, 
1980), which are scored as the number of elements in the stimulus and the num­
ber of transformations required to convert one stimulus to another stimulus, 
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F i g u r e 10.1. Histogram ofthe item difficulty parameters from a test measuring French 
reading comprehension for the levels (a) Al , (b) A2, and (c) B l ofthe European Framework 
for Languages. 
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respectively. One can then study whether a linear combination of these two com­
plexity factors gives good prediction of response accuracy on geometric analogy 
items. For the verbal aggression questionnaire, the effect ofthe behavior mode, 
the situation type, and the behavior type on the inclination to react in a verbally 
aggressive way can be investigated. The item features of a test can refer to a prior 
conceptualization of the cognitive structure of the test items, or they can be 
derived post hoc to describe the characteristics of a given test. Item features can 
be used for item construction purposes, the exponent of which is automated item 
generation. Examples of item features in item generation studies can be foimd in 
chapters 1 and 9 of this volume. 

The distinction between an item groups design and an item features design 
is merely at a conceptual level. In fact, both designs refer to the same linear 
model on the item side, as is the case for ANOVA and regression models. Item 
groups are a special type of item feature. They refer to binary, nonoverlapping 
item features, which indicate group membership. 

In the following pages, a general model is described for modeling item 
designs within the Rasch model (Janssen, De Boeck, & Schepers, 2003; Janssen, 
Schepers, & Peres, 2004). The model is based on a random-effects extension of 
the LLTM, which was developed by Fischer (1973,1983,1995). After the presen­
tation ofthe model, the estimation ofthe random-effects model and its relation­
ships with other models from IRT are discussed. In the next section, applications 
ofthe model are presented. At the end ofthe chapter, the approach and its advan­
tages are summarized. 

T h e Random-Effec ts LLTM 

The Model 

THE RASCH MODEL AS A STARTING POINT. AS a starting point, take the Rasch 
model to model the probability that person i responds correctly to itemy". In the 
Rasch model, both persons and items are assumed to vary along a common, 
latent scale. A person's position along the latent scale (indicated as 0;) refers to 
his or her ability level, an item's position (indicated as (3,) to its difficulty level. 
The difference between the two positions (i.e., the value of 8; - p;) determines 
the probability of success 

P ( ^ = l ) = m - P ; ) , (D 

where /"refers to either the logit or the probit link function. For example, when 
working with a probit link function, /"refers to the cumulative standard normal 
distribution and the model reads as 

ei-Bj / -̂  

<fr(ei-p,-)= exp - - * 2 dz. (2) 

When ^ = fy, the success probability is .50. The more 0; exceeds (3, on the latent 
scale, the higher the success probability becomes, and vice versa. 
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Figure 10.2a gives a graphical representation ofthe Rasch model by means 
of a directed acyclic graph (see, e.g., Spiegelhalter, Best, Gilks, & Inskip, 1996). 
In such a graph, circles denote unobserved variables and squares are observed 
variables. The solid arrows refer to probabilistic relations, whereas the 
dotted arrows correspond to the deterministic relations in the model. In the 
Rasch model, there are two real-world components: person and item. The 
data are modeled in a probabilistic way on the basis ofthe person ability and 
item difficulty parameters. Figure 10.2a adds to Equation 1 the assumption 
that all persons belong to the same population with mean pe and variance Gg. 
Although not a necessary part ofthe Rasch model, the additional assumption 
is used throughout the present chapter. To identify the origin of the latent 
scale, pe can be fixed to zero. 

THE LLTM. The Rasch model describes the differences in difficulty among 
the items without taking into account the item design. The LLTM was the 
first model to add the effect of an item design to the Rasch model. The model 
starts from an item-by-item predictor matrix Q of size J x P, which describes 
for each item j its value qjP on item predictor p. The item predictors can refer 
to an item group (e.g., using a dummy variable) or to an item feature. As an 
example, Table 10.1 shows an extract from the Q-matrix for the items oftwo 
specific situations ofthe verbal aggression questionnaire. The three item fea­
tures ofthe item design were coded into four item predictors, complemented 
with the constant item predictor (see below). All item features were coded 
with dummy variables with want, self-to-blame, and shout as the respective 
reference categories (see Table 10.1). For example, the dummy variable "curse" 
marks the difference between the behavior "curse" versus the behaviors 
"scold" and "shout." 

The LLTM assumes that the Rasch item difficulty parameters (3, in Equa­
tion 1 or 2 can be replaced by a linear combination ofthe item predictors 

p 

$j = l<ijpT\p=qjT\, (3) 
P=I 

where the rip are the weight parameters, which are grouped in the vector y\ of 
length P. Usually Q contains a constant with qjp - 1 for all the items, which acts 
as the intercept in the linear combination in Equation 3. Figure 10.2b repre­
sents the LLTM graphically. In comparison with Figure 10.2a, the effect of item 
difficulty is replaced with the linear combination of item predictors. 

THE LLTM-R. The LLTM is a very stringent model. In practice, likeli­
hood ratio tests ofthe LLTM against the unconstrained Rasch model almost 
invariably lead to a significant deviance. Therefore, Janssen et al. (2003) 
proposed a random-effects version of the LLTM, labeled as LLTM-R (with 
the "R" referring to "Random"). The LLTM-R adds to the Rasch model that 
item difficulty is determined only to a certain extent by the linear structure 
derived from the item design. The "unexplained" part is modeled with a ran­
dom error term e, for each (3, 



MODELING THE EFFECT OF ITEM DESIGNS 233 

(a) 

(b) 

(c) 

(d) 

Figure 10.2. Graphical representation of (a) the Rasch model, (b) the linear logistic 
test model (LLTM), (c) the LLTM-R (R = random), and (d) the LLTM-R with the data 
augmentation step (J. H. Albert, 1992). 
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P,=9/n + e,=p*+e,, (4) 

where e, - iV(0, af) with N denoting the normal distribution. P* denotes the dif­
ficulty of itemj as predicted by the linear stmcture specified in Q. The model in 
Equation 4 is formally equivalent with a hierarchical model for the fy with 

Py- iV^Oi ) , (5) 

where (3* is defined as in Equation 4. The r[ and ol are now called the hyper-
parameters of the LLTM-R, as they specify (together with Q) the mean and 
variance ofthe distribution ofthe fy. 

The LLTM-R can be interpreted in two interrelated ways. The formulation 
of the model in Equation 4 highlights a random error interpretation of the 
LLTM-R with alas the residual variance. The parameters e, incorporate ran­
dom variation in item difficulty for items with the same item design, so that the 
item design does not need to cover the item difficulties perfectly. The formula­
tion ofthe model in Equation 5 highlights a random sampling interpretation of 
the LLTM-R with of as the within-class variance of the fy. In this interpreta­
tion, the item difficulty parameters of the same item class are considered to be 
exchangeable members of a population of items defined by the item design vec­
tor qj. The random-effects formulation ofthe LLTM also allows for a generaliza­
tion to new items in each cell ofthe design. 

A graphical representation ofthe LLTM-R is given in Figure 10.2c. It clar­
ifies that the LLTM-R consists of two parts: a model for the data given in 
Equation 1 or 2 and a model for the item parameters given in Equation 4 or 5. 
The model for the item parameters specifies that the P, consist of a linear, struc­
tural part p* and a random component e,. In contrast with the two previous 
models, the LLTM-R encompasses three real-world components: person, item, 
and item population, with the items nested within an item population. In many 
applications with item features, there is only one item per item population. 
Because ofthe item populations, the LLTM-R can be seen as a multilevel model 
on the item side. 

COMPARISON OF THE LLTM-R WITH THE LLTM. Janssen et al. (2003) showed 
the estimates of r| in the LLTM are attenuated in comparison with the correspon­
ding estimates in the LLTM-R. As a general approximation it can be derived (see 
the Estimation section) that for a given parameter r^ 

VI+ c! 

Equation 6 implies that the estimates ofthe LLTM will be equal to those ofthe 
LLTM-R only when a?=0. This is not surprising, as the LLTM is equivalent to the 
LLTM-R only when the linear combination of item predictors explains item diffi­
culty perfectly. Equation 6 also shows that the larger the unexplained variance, 
the larger the attenuation effect. The attenuation effect will be less pronounced, 
the closer r[p is to zero. 



MODELING THE EFFECT OF ITEM DESIGNS 235 

Janssen et al. (2003) also showed that within the LLTM the standard 
errors of the r|p are underestimated. This is a consequence of the fact that the 
LLTM does not take into account the within-cell variance in the item design 
matrix. This may lead to a Type I error when rejecting the null hypothesis that 
a particular r)p equals zero. 

Estimation 

The LLTM-R is a crossed random-effects model, with a normal distribution at 
the person mode with 8; - Aftpe, of) and at the item mode with P, - iV(P*, of). 
Estimation of crossed-random effects models for binary responses is a complex 
statistical problem, for which both likelihood-based and Bayesian solutions exist 
(Molenberghs & Verbeke, 2004). For the estimation ofthe LLTM-R, Janssen et al. 
(2003,2004) described the pseudo-likelihood approach of Wolfinger and O'Connell 
(1993) and the Bayesian method of data augmented Gibbs sampling (Albert, 1992; 
Albert & Chib, 1993). In a sense, both estimation procedures involve the same 
trick of not modeling the dichotomous response directly, but a related, continuous 
response instead. In the pseudolikelihood approach, a linear mixed model is 
iteratively fitted to a pseudoresponse, which is a linearized approximation ofthe 
original data based on a Taylor expansion. The pseudolikelihood approach is 
implemented in the GLIMMK macro of SAS. The specific commands to estimate 
the LLTM-R can be found in Janssen et al. (2004). In data-augmented Gibbs sam­
pling, the posterior distribution is augmented with latent data Zy for each pair of 
a person and an item. As is shown in Figure 10.2d, the latent data points zy in a 
sense replace the success probabilities py. Intuitively speaking, one could say that 
the Zy bring the (dichotomous) data on the same continuous latent scale as the per­
son and items parameters 8* and fy. 

The data augmentation step is explained in more detail in Figure 10.3. The 
procedure makes use ofthe probit link function as presented in Equation 2. This 
implies that the probability of a correct response is derived from the cumulative 
standard normal distribution (see Figure 10.3a) and, hence, corresponds to a 
response surface in the standard normal distribution (see Figure 10.3b). Making 
use ofthe properties of a change of variables in a normal distribution, the same 
response surface can be found in a normal distribution with mean 6; - fy and 
variance of 1, namely, as the probability of a positive value (see Figure 10.3c). 
The distribution ofthe Zy is a zero-truncated normal distribution 

Z g - N f a - P j , ! ) with Zy < 0 when xy = 0, and Zy > 0 otherwise (7) 

The truncation implies that the probability that Zy > 0 equals the probability of 
a correct response given in Equation 1. Equation 7 shows that the Zy are related 
in a probabilistic way to the parameters 0, and fy, whereas their relationship 
with the observed response Xy is deterministic (as can be seen from the type of 
arrows in Figure 10.2d). 

Given the data augmentation, the Gibbs conditionals for all model parame­
ters can be derived analytically (see Janssen et al., 2003,2004). These Gibbs con­
ditionals partition the augmented posterior distribution in a set of conditional 
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(a) 

P(Xii=l) 

(b) 

0 Oi-Pj 

(c) 

Y p i =l 

o %-$ 

Figure 10.3. The different steps in data augmentation: (a) calculating the success 
probability with a probit link function, (b) the corresponding response surface in a stan­
dard normal distribution, and (c) the equivalent surface in HG; - fy, 1) and the drawing 
ofthe latent data. 

distributions for every parameter given the values ofthe other parameters. This 
partitioning is used in a Markov chain Monte Carlo procedure or the Gibbs sam­
pling process, in which the augmented posterior distribution is approximated by 
iteratively drawing samples of parameters from it using the Gibbs conditionals. 
The Bayesian estimation of a parameter then consists of summarizing the values 
obtained from the Markov chain by a posterior mean and a posterior standard 
deviation. 

The derivation of the latent data can also be used to explain the attenua­
tion effect in the regression weight r\ in the LLTM as a scaling effect (De Boeck 
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& Wilson, 2004a; Snijders & Bosker, 1999). Apart from the variance of 8;, the 
latent data are drawn in the LLTM from a scale with a variance of 1. In the 
LLTM-R, however, the latent data are drawn from a scale with a variance of 
1 + of, as a random effect is added on the item mode. Hence, the latent scales of 
the two models differ in variance, and, consequently, the values ofthe LLTM 
will be smaller than in the LLTM-R. The reduction factor in Equation 6 can be 
seen as a factor expressing the differences in variance ofthe latent scales. 

Related IRT Models 

Mislevy (1988) proposed a random-effects formulation ofthe LLTM with ran­
dom variation ofthe item difficulty parameters with the same generic stmcture 
as a means to exploit auxiliary information about the items in the estimation of 
Rasch item difficulty parameters. However, at that time only a computational 
approximation based on an empirical Bayes procedure was available for model 
estimation. A general formulation of the LLTM-R can be found in Albert and 
Chib (1993). They proposed a hierarchical extension of probit models, in which 
the weight parameters of a probit regression model are themselves regressed 
upon other predictor variables. 

The LLTM-R can be used to model an item groups design within a Rasch 
model. Janssen, Tuerlinckx, Meulders, and De Boeck (2000) described a similar, 
multilevel extension on the item side for the two-parameter IRT model, and Glas 
and Van der Linden (2003) did the same for the three-parameter model. In these 
hierarchical models, the items are nested within item groups. Within each item 
group, the item parameters are modeled as random, whereas the item group 
parameters are treated as fixed. Whereas the LLTM-R only models the difficulty 
of the items, the other models also look at the within-group distributions of the 
item discrimination and the item guessing parameter. 

App l i ca t i ons 

Overview of Possible Fields of Application 

Domain-referenced testing (Janssen et al., 2000), construct representation 
research (Janssen et al., 2003), and automated item generation (Glas & Van der 
Linden, 2003) have been studied as fields of application of the IRT models with 
random effects at the item side. In domain-referenced testing, the principal idea 
is that the items of a test are a random sample from a domain, which refers to a 
population of items. Consequently, the item parameters ofthe test can be seen as 
random-effect parameters. The domain characteristics can be modeled with the 
hyperparameters describing the distributions ofthe random effects. In constmct 
representation research, the effect of the item design on the item parameters is 
studied. As was shown in Equation 4, in such a situation the item parameters are 
interpreted as random-effect parameters consisting of a fixed, stmctural part 
and a random error part. These two fields of application are illustrated and dis­
cussed in the next sections, as examples of modeling an item groups design and 
an item features design, respectively. 
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In automated item generation (e.g., Bejar, 2002; Embretson, 1998; 1999), 
items are seen as clones from a parent. However, the cloning is not perfect, lead­
ing to individual item variation. Consequently, each parent characterizes a dis­
tribution of items. The expected value of this distribution refers to a typical or 
"average" item ofthe family. The variance ofthe distribution refers to a kind of 
heredity coefficient, as it indicates how strongly individual items can differ from 
their parent, or from the typical item. In their multilevel three-parameter model, 
Glas and Van der Linden (2003) only studied parents as item groups. However, 
one could also model automatically generated items as items that are generated 
from a set of item design variables and, hence, according to an item features 
design (see chap. 1, this volume). 

DOMAIN-REFERENCED MEASUREMENT THROUGH MODELING ITEM GROUPS 

Domain-referenced measurement. A well-defined behavior domain (Popham, 
1978) represents the knowledge and skills required for mastery of a specific 
content area. The term domain refers to a universe of items. A test is supposed 
to be composed of a random sample from this population of items. A domain 
score reflects the proportion of the domain mastered. An important advantage 
of the use of domain scores is their ease of interpretation. A domain score is 
directly linked to the expected performance on a domain of items. It can be seen 
as an example of criterion-referenced measurement. 

IRT-based domain scores. Bock, Thissen, and Zimowski (1997) and 
Pommerich, Nicewander, and Hanson (1999) showed that IRT models are an 
indispensable tool for the estimation of domain scores. Both studies start from the 
assumption that the domain is represented in an item bank. Hence, the perfor­
mance on any test drawn from that bank (or linked to it by anchor items) can be 
interpreted in terms of a domain score. Bock et al. (1997) showed that given an 
estimate of ability based on the performance on a sample of items, the average 
probability of success on the items ofthe domain can be calculated. In the case in 
which the domain consists of several strata, a weighted average is calculated 

j 

IWjPjfii) 
d i = J ~ , (8) 

l ^ j 

where di refers to the estimated domain score for person i, #,(9,) refers to the 
probability of success on item j given the estimated ability of person i, and 
Wj refers to the weight of itemj. The sum in Equation 8 is calculated over all 
J items in the item bank. 

Bock et al. (1997) showed that the IRT-based average success probability 
is a far more accurate predictor for the proportion of mastery of the domain 
than the classical percentage correct score on the test. Pommerich et al. (1999) 
extended the use of IRT-based domain scores to estimate a group's average 
domain score. Schulz, Kolen, and Nicewander (1999) used IRT-based domain 



MODELING THE EFFECT OF ITEM DESIGNS 239 

scores in a hierarchical test design with domains as item groups. Each domain 
defines a specific level of achievement on the latent scale and is represented by a 
pool of items. For each level of achievement, an IRT-based domain score is calcu­
lated. Using a .8 criterion to define mastery of a level of achievement, Schulz et al. 
(1999) showed that Guttmann-consistent patterns of mastery could be inferred 
from the level scores. Figure 10.4 presents a hierarchical item design for three lev­
els of achievement on the latent scale. The corresponding pattern of mastery is 
given for the case that the first two levels of achievement are attained. 

The hierarchical IRT model. Instead of calculating a domain score as an 
average probability of success on the items ofthe domain, a domain score can be 
estimated by calculating the probability of success on an average item (Janssen, 
2002). The average item is defined on the basis ofthe characteristics ofthe pop­
ulation distribution of the items of the domain. Consider a test measuring K 
domains or criteria with K > 1. Each itemj measures a single domain k, hence, the 
test is compiled according to an item groups design, with each domain referring to 
an item group. Suppose further that the items are scored dichotomously and that 
the probability that a person i responds correctly to itemj of domain k is modeled 
according to the Rasch model with ability parameters 8; and item difficulty 
parameters fy (as in Equation 1). It is further assumed that each domain k is char­
acterized by a certain difficulty P* on the latent scale. The difficulty parameters of 
the items measuring a certain domain are assumed to be located aroimd P* with 
variance of, which is expressed in Equation 5. The variance can be made domain-
specific if each domain is measured with a sufficient number of items. When 
several domains are measured, the hierarchical IRT model assumes that these 
domains refer to a common latent ability. However, it should be clear that this 
unidimensionality with respect to the latent continuum does not imply that all 
domains are equal in difficulty. For example, the ordering of domains may refer 
to different achievement levels, as in the study by Schultz et al. (1999). 

In the hierarchical IRT model, a domain is measured on the same latent 
continuum as the person ability parameters. Hence, given the values of the 

Patterns of mastery 

Levels of achievement 

Items on the latent scale 

Figure 10.4. Schematic representation of a hierarchical item design (E. M. Schultz, 
M. J. Kolen, & W. A. Nicewander, 1999). 
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hyperparameters, one can calculate the probability of mastering domain k 
for each person i by assuming that the domain acts like an unobserved "super 
item" Y^ that has to be solved correctly 

P{Y lk=l) = f{Qi-fk), (9) 

where/"is again the logit or probit link function. The probability in Equation 9 
can be seen as an estimate ofthe domain score. 

Using a set of cutoff points on the domain score, respondents can, for exam­
ple, be classified into three categories with respect to each domain: nonmastery 
(probability Pr < 0.5), transition stage (0.5 < Pr < 0.8), and mastery (Pr > 0.8). 
Passing the .50 probability indicates that the person has a higher probability to 
solve a randomly selected item from the domain correctly than to solve the item 
incorrectly. This can be considered as an initial stage of mastery ofthe domain. 
Passing the .80 probability indicates that the person's probability of a correct 
answer is so high that an incorrect response to a randomly selected item from 
the domain is more likely to be dependent on error fluctuations rather than on 
a lack of proficiency. 

Note that the .50 boundary between nonmastery and the transition stage 
does not necessarily imply that 50% ofthe respondents are classified as a non-
master. A basic property of IRT models is that the estimation of the item 
parameters (and, hence, ofthe hyperparameters) is more or less independent of 
the ability of the persons in the calibration sample. Hence, the percentage of 
respondents being classified in the nonmastery category can in principle vary 
between 0 and 100, depending on the location ofthe respondents on the latent 
continuum with respect to the location ofthe domain difficulty. 

Domain scores and standard setting. The basic problem of standard setting 
is to set a minimum level of proficiency to be declared a master in a specific 
content area and to classify students accordingly on the basis of their test per­
formance. Most standard-setting studies are based on a continuum view of 
mastery (Meskauskas, 1976). This implies that the test score is assumed to be 
an index ofthe progression along a continuously distributed ability dimension. 
Commonly, an item-centered approach is used to set a cutoff on the continuum. 
The location of the cutoff score is based on judgments about the expected per­
formance of a minimally competent student on the test items. In this approach, 
the items of the test are in a sense considered as "fixed" and the discussion is 
focused on setting a cutoff score on the test score scale. 

Domain scores may be used as an alternative approach to standard setting. 
In domain-referenced measurement, the domain about which mastery clas­
sifications are to be made is defined first. In contrast with an item-centered 
approach to standard setting, test items are considered to be a random sample 
from this domain. Performance on the test items can be linked to a performance 
score on the domain. Fixed cut points on the domain scores can then be used for 
mastery classifications. 

Use of domain scores in national assessments. Bock (1996) proposed "pub­
lic domain scores" as a better way to report assessment results. In his proposal, 
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the item bank is divided into "core items" and 8-items. The core items are domain 
defining and are chosen on the basis of experts'judgments. They are released to 
the public, which is not the case for the 8-items. The latter have the primary pur­
pose of estimating the students' ability. Using test equating procedures, the 
8-items are linked to the core items. Given the value of 8; for a student, a domain 
score can be calculated. 

Schulz, Lee, and Mullen (2005) used a domain-level approach to provide 
criterion-referenced descriptions of growth in achievement for the Grade 8 
National Assessment of Educational Progress (NAEP) in mathematics. Growth 
was conceived of as a sequential mastery of skills. Teachers were able to reliably 
classify items into one of multiple content domains with an expected order of dif­
ficulty. Using expected percentage correct scores on the domains, it was possible 
to describe each achievement level boundary (basic, proficient, and advanced) on 
the NAEP scale by patterns of skill that include both mastery and nonmastery. It 
was shown that higher achievement levels were associated with mastery of more 
skills, which corresponds to the idea of growth in educational achievement. 

Janssen, De Corte, Verschaffel, Knoors, and Colemont (2002) used the 
hierarchical IRT model of Janssen et al. (2000) to assess how many children in 
primary education in Flanders reach the attainment targets, which specify the 
expected basic competencies of children who leave primary education. Using 
a Bayesian estimation procedure, they estimated the proportion of pupils who 
had a domain score of at least .50 by counting over Gibbs draws and over students 
the relative frequency of occurrence ofthe posterior success probabilities calcu­
lated according to the two-parameter version of Equation 9. It was shown that for 
the attainment targets regarding "Number," the performance on the scales was 
roughly ordered in terms ofthe complexity ofthe mathematical skills involved. 
The attainment targets of mental arithmetic and written computation were 
reached by approximately 90% of the children, whereas problem solving and 
estimation and approximation of numbers were reached by approximately 40%. 
The ordering may reflect the traditional focus on declarative and lower order 
procedural skills in Flemish mathematics. 

Janssen and Van Nijlen (2003) compared the results ofthe Bookmark proce­
dure for standard setting (Mitzel, Lewis, Patz, & Green, 2001) with the estimation 
of domain scores for the 2002 National Assessment of Mathematics in Primary 
Education in Flanders. Fourteen different scales were involved, covering attain­
ment targets with respect to numbers (four scales), measurement (three scales), 
geometry (three scales), and strategies and problem solving (four scales). A group 
of 25 teachers, educational advisors, teacher trainers, members ofthe inspec­
tion, and policymakers set a minimum standard for each scale, indicating the 
minimum level of performance required to reach the corresponding attainment 
targets. They gave their judgments in three rounds (individually working, dis­
cussing in small groups, and discussing in the large group). The cutoff score 
was set at the median judgment in the last round. In contrast with the orig­
inal Bookmark procedure, the judges were provided an item map of each scale. 
Students were considered masters if they had a probability of at least .50 to 
answer an item correctly that would be right at the cutoff. Likewise, students 
were considered to be masters within the hierarchical IRT model of Janssen et al. 
(2000) if their estimated domain score was at least .50. Figure 10.5 presents a 
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Figure 10.5. Scatter plot of the number of students reaching the attainment targets 
in mathematics according to the standards from the hierarchical IRT model and from 
the Bookmark procedure. 

scatter plot ofthe number of students reaching the attainment targets in math­
ematics according to the Bookmark procedure and according to the domain 
score procedure. In general, both methods of standard settings gave similar 
results. This may be seen as an external validation ofthe use of domain scores 
in national assessments. 

Studying Construct Representation Through Item Feature Designs 

The 24 items ofthe verbal aggression questionnaire of Vansteelandt (2000), 
which was introduced at the beginning of this chapter, were administered to 
316 students of psychology. The resulting data set is one ofthe example data 
sets used throughout the volume of De Boeck and Wilson (2004b). 

At the person side, trait anger was found to be a significant predictor of 
the tendency to react in a verbally aggressive way (Wilson & De Boeck, 2004a). 
The effect of an increase of one standard deviation on the trait anger scale on 
a .50 probability was to raise that probability to .57. The effect of gender was 
not statistically significant. Males were not significantly more inclined to ver­
bal aggression than were females. 

Janssen et al. (2004) studied the item features design with the LLTM-R. 
In the present chapter, we redo the analysis with the item features coded 
with dummy variables. As was shown in Table 10.1, want, self-to-blame, and 
shout acted as the reference categories ofthe three design factors. The model 
was estimated with GLIMMIX. The results of the analysis are presented in 
Table 10.2. 
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Table 10.2. Estimated Weights of the Item Predictors With the LLTM-R for the 
Verbal Aggression Data (Vansteelandt, 2000) 

Item predictor Estimate (SE) 

Do (vs. want) .71 (.17) 
Other-to-blame (vs. self-to-blame) -1.05 (. 17) 
Curse (vs. scold and shout) -2.04 (.17) 
Scold (vs. curse and shout) -0.99 (.17) 
Intercept .33 (.17) 

Note. LLTM-R = linear logistic test model (R = random); SE = standard error. Data from 
Vansteelandt (2000). 

All estimated effects were significantly different from zero. The effect of 
behavior mode indicates that when going from wanting to doing, the probabil­
ity decreases to react verbally. If the probability of wanting were .50, then the 
probability of doing would be .34. The effect of situation type implies that when 
others are to blame, verbal aggression is more common than when oneself is to 
blame. The effect on a probability of .50 for a self-to-blame situation would be 
to raise it to .74 for an other-to-blame situation. Finally, the effect of behavior 
type shows that the threshold for cursing is the lowest, followed by scolding and 
then shouting. If the probability of shouting were .50 in a given situation, the 
probability of cursing or scolding would rise to .88 and .73, respectively. 

Using the empirical Bayes method, the value ofthe random effects could be 
calculated, which allows one to compare the values of fy and their predicted value 
P*. The correlation between both values over items was .94. Hence, the item fea­
tures predicted the item thresholds to react in a verbally aggressive way very well. 
In other words, the item features design taught us something about the constmct 
of self-reported verbally aggressive behavior. 

S u m m a r y 

The present chapter described the random-effects extension ofthe LLTM, which 
in itself is an elaboration ofthe Rasch model. The new model allows one to mea­
sure individual differences and at the same time test a theory on the influence 
of item groups or items features on the response behavior. From the point of 
view of construct validation research, the model is helpful to study both the 
nomothetic span ofthe test (e.g., convergent, differential, and predictive valid­
ity) and its constmct representation (also called substantive validity). An inter­
esting feature ofthe model is that it shares the advantages of other IRT models, 
such as the possibility to measure individuals on the same scale while they are 
taking different subsets of items. One can also investigate the characteristics of 
a large set of items without the need that one group of examinees has to respond 
to all of them. It is sufficient to have, for example, different test booklets that are 
compiled according to an incomplete design with anchor items. The LLTM-R 
may be applied in different research contexts, both theoretical and practical. 
The model may be especially promising for automatic item generation studies, 
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as one cannot expect theories to predict item difficulty in a perfect way. Only in 
the latter case, the LLTM-R is equal to the LLTM. Finally, the LLTM-R gives a 
model-based assessment of domain scores, which may form an alternative 
approach to the problem of standard setting. 

References 

Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sam­
pling. Journal of Educational Statistics, 17, 251-269. 

Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polytomous response data. Journal 
of the American Statistical Association, 88, 669-679. 

Bejar, 1.1. (2002). Generative testing: From conception to implementation. In S. H. Irvine & P. C. 
Kyllonen (Eds.), Generating items from cognitive tests: Theory and practice (pp. 199-217). 
Mahwah, NJ: Erlbaum. 

Bock, R. D. (1996). Public domain scores: A better way to report assessment results. Unpublished 
manuscript. 

Bock, R. D., Thissen, D., & Zimowski, M. F. (1997). IRT estimation of domain scores. Journal of 
Educational Measurement, 34, 197-211. 

Council of Europe (2001). Common European framework of reference for languages: Learning, 
teaching, assessment. Cambridge, England: Cambridge University Press. 

De Boeck, P., & Wilson, M. (2004a). A framework for item response models. In P. De Boeck & 
M Wilson (Eds.), Explanatory item response models: A generalized linear and nonlinear 
approach (pp. 3-41). New York: Springer. 

De Boeck, P., & Wilson, M. (Eds.). (2004b). Explanatory item response models: A generalized linear 
and nonlinear approach. New York: Springer. 

Embretson, S. E. (1983). Construct validity: Construct representation versus nomothetic span. 
Psychological Bulletin, 93, 179-197. 

Embretson, S. E. (1985). Introduction to the problem oftest design. In S. E. Embretson (Ed.), Test 
design: Developments in psychology and psychometrics (pp. 3-17). New York: Academic Press. 

Embretson, S. E. (1998). A cognitive design system approach to generating valid tests: Application 
to abstract reasoning. Psychological Methods, 3, 380-396. 

Embretson, S. E. (1999). Generating items during testing: Psychometric issues and models. 
Psychometrika, 64, 407-433. 

Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta 
Psychologica, 37, 359-374. 

Fischer, G. H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 3-26. 
Fischer, G. H. (1995). The linear logistic test model. In G. H. Fischer & I. W. Molenaar (Eds.), 

Rasch models: Foundations, recent developments, and applications (pp. 131-155). New York: 
Springer. 

Glas, C. A. W., & Van der Linden, W. (2003). Computerized adaptive testing with item cloning. 
Applied Psychological Measurement, 27, 247-261. 

Janssen, R. (2002, April). Model-based classification of students using a hierarchical IRT model for 
criterion-referenced measurement. Paper presented at the annual meeting of the National 
Council on the Measurement in Education, New Orleans, LA 

Janssen, R., De Boeck, P., & Schepers, J. (2003). The random-effects version ofthe linear logistic 
test model. Unpublished manuscript. 

Janssen, R., De Corte, E., Verschaffel, L., Knoors, E., & Colemont, A. (2002). National assessment 
of new standards for mathematics in elementary education in Flanders. Educational Research 
and Evaluation, 8, 197-225. 

Janssen, R., Schepers, J., & Peres, D. (2004). Models with item and item group predictors. In P. De 
Boeck & M. Wilson (Eds.), Explanatory item response models: A generalized linear and non­
linear approach (pp. 189-212). New York: Springer. 

Janssen, R., Tuerlinckx, F., Meulders, M., & De Boeck, P. (2000). A hierarchical IRT model for 
criterion-referenced measurement. Journal of Educational and Behavioral Statistics, 25, 
285-306. 



MODELING THE EFFECT OF ITEM DESIGNS 245 

Janssen, R., & Van Nijlen, D. (2003, July). Judges or models? Comparing the Bookmark procedure 
with a hierarchical IRT model for standard setting. Paper presented at the Workshop on 
Psychometrics and Educational Measurement held at the University of Leuven, Belgium. 

Janssen, R., Volckaert, B., Lamote, B., Ceulemans, N., Binon, J., Desmet, P., & Van Damme, J. 
(2005). De constructie van een peilinginstrument moderne vreemde talen (Frans) voor de eerst 
graad secundair onderwijs [Test development for a national assessment on the curriculum 
standards of French of Grade 8]. Leuven, Belgium: Leuven Institute for Educational Research, 
Faculty of Psychology and Educational Sciences, University of Leuven. 

Meskauskas, J. A. (1976). Evaluation models for criterion-referenced testing: Views regarding 
mastery in standard setting. Review of Educational Research, 45, 133-158. 

Mitzel, H. O, Lewis, D. M., Patz, R. J., & Green, D. R. (2001). The bookmark procedure: psycholog­
ical perspectives. In G. J. Cizek (Ed.), Setting performance standards: Concepts, methods, and 
perspectives (pp. 249-281). Mahwah, NJ: Erlbaum. 

Mislevy, R. J. (1988). Exploiting auxiliary information about items in the estimation of Rasch item 
difficulty parameters. Applied Psychological Measurement, 12, 725-737. 

Molenberghs, G., & Verbeke, G. (2004). An introduction to generalized (non)linear mixed models. 
In P. De Boeck & M. Wilson (Eds.), Explanatory item response models: A generalized linear and 
nonlinear approach (pp. 111-153). New York: Springer. 

Mulholland, T., Pellegrino, J. W., & Glaser, R. (1980). Components of a geometric analogy solution. 
Cognitive Psychology, 12, 252-284. 

Pommerich, M., Nicewander, W. A., & Hanson, B. A. (1999). Estimating average domain scores. 
Journal of Educational Measurement, 36, 199-216. 

Popham, W. J. (1978). Criterion-referenced measurement. Englewood Cliffs, NJ: Prentice-Hall. 
Schulz, E. M., Kolen, M. J., & Nicewander, W. A. (1999). A rationale for defining achievement lev­

els using IRT-estimated domain scores. Applied Psychological Measurement, 23, 347-362. 
Schulz, E. M., Lee, W. C, & Mullen, K. (2005). A domain-level approach to describing growth in 

achievement. Journal of Educational Measurement, 42, 1-26. 
Snijders, T., & Bosker, R. (1999). Multilevel analysis. London: Sage. 
Spiegelhalter, D. J., Best, N. G., Gilks, W. R., & Innip, H. (1996). Hepatitis B: A case study in MCMC 

methods. In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.), Markov chain Monte Carlo 
inpractice (pp. 21-43). New York: Chapman & Hall. 

Vansteelandt, K. (2000). Formal models for contextualized personality psychology. Unpublished 
doctoral dissertation, K. U. Leuven, Belgium. 

Wilson, M., & De Boeck, P. (2004). Descriptive and explanatory item response models. In P. De 
Boeck & M. Wilson (Eds.), Explanatory item response models: A generalized linear and non­
linear approach (pp. 44-74). New York: Springer. 

Wolfinger, R. D., & O'Connell, M. (1993). Generalized linear mixed models: A pseudo-likelihood 
approach. Journal of Statistical Computing and Simulation, 48, 233-243. 



This page intentionally left blank



11 

Cognitive Design Systems: 
A Structural Modeling Approach 
Applied to Developing a Spatial 

Ability Test 

Susan E. Embretson 

Traditionally, item and test development have been more an art than a science. 
Item specifications are usually vague; in fact, sometimes item writers are merely 
instructed to develop new items to be similar to those on an existing test. Thus, 
empirical item tryout is essential to ensure item quality. This process is not only 
expensive but also creates substantial delays in the test development process. In 
1970, Cronbach (p. 508) noted that the design and constmction oftest items had 
received little scholarly attention and essentially was viewed as an art form (e.g., 
Wesman, 1971, p. 81). Although some progress has been made in explicating con­
tent domains for achievement tests (Schmeiser & Welch, 2006), current item 
development practice falls far short of the theoretical process envisioned by 
Bormuth (1970), especially for ability tests. Yet, substantial research from cogni­
tive psychology is available on the theoretical mechanisms underlying many 
types oftest items (see chap. 9, this volume). 

Spatial ability tests are no exception to this description, even though the 
underlying processes in performing spatial tasks often have been studied by cog­
nitive psychologists (e.g., Just & Carpenter, 1985). The Assembling Objects (AO) 
test, for example, was developed as part ofthe U.S. Army's Project A (Peterson et 
al., 1990). In Project A, tests were developed and evaluated for possible inclusion 
on the Armed Services Vocational Aptitude Battery (ASVAB) to increase the pre­
diction of job performance (Campbell, 1990). The goal was to measure the spatial 
rotation component of spatial ability. In the AO task (see Figure 11.1), pieces of an 
object are presented, and the examinee selects from four alternatives to identify 
the object that results from assembling the pieces. No details on item constmction 
are given in Peterson et al., however. Thus, traditional item development proce­
dures probably were applied, perhaps with the item writers instructed to model 
the AO items after a similar test (e.g., Tinker, 1944). Since the initial development 
ofthe AO test in Project A, a consideration basis for a scientific approach to devel­
oping AO items has emerged from cognitive psychology research (e.g., Just & 
Carpenter, 1985; Mumaw & Pellegrino, 1984). 

This chapter describes a system oftest development that is based on a scien­
tific approach to designing and calibrating item psychometric properties. The 
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Figure 11.1. An AO item from item generator. 

cognitive design system approach (Embretson, 1998) can also lead to automatic 
item generation. Bejar (2002) classified it as a structural modeling approach 
(Bejar et al., 2003) to item generation because the underlying stmctures that 
produce item difficulty and other psychometric properties are identified. In 
some cases, item stmctures based on the cognitive model can be embedded in a 
computer program to automatically generate items to target levels and sources 
of difficulty. 

In this chapter, an overview of the cognitive design system approach and 
appropriate psychometric models are given. Then, the results from a project on 
the AO test are described in detail to illustrate the various properties. 

T h e Cogn i t ive Des ign Sys t em A p p r o a c h 

The research effort in the cognitive design system approach contrasts sharply 
with traditional test development methods in the balance of research effort. In 
the traditional test development approach, little effort is invested in studying the 
impact ofthe stimulus features of items that may impact performance. Thus, the 
major research effort occurs with the requirement of empirical tryouts for all new 
items. In contrast, the cognitive design system approach involves prior research 
effort to understand the sources of item complexity, and then much less effort in 
item tryout and the further development ofthe item bank. Thus, it is important 
to describe the stages of test development and the relative advantages of the 
stmctural model approach. 

Steps in the Cognitive Design System Approach 

In this section, the steps that are involved in implementing the cognitive design 
system approach will be briefly described. The approach requires relatively more 
effort than traditional item development; however, this effort leads to advan­
tages in item quality and efficient item production which are also noted in this 
section. 

DEVELOPMENT OF THE THEORETICAL FRAMEWORK. In the cognitive design 
system approach, as in traditional test development, the process begins with 
specifying the goals of measurement. In the traditional approach, the primary 
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specified goals often concern the external relationship of test scores; for exam­
ple, one stated goal for the Scholastic Aptitude Test has been to measure the 
abilities that predict Ist-year college grades. However, in the cognitive design 
system approach, specifying the constmct representation ofthe test in terms of 
the processes, components, and knowledge to be involved in test performance 
(see Embretson, 1983, 1998) also has major importance. Specifying the con­
struct representation for the test facilitates distinguishing between construct-
relevant versus constmct-irrelevant processes in items. 

The next step is identifying both general and specific features of items. 
Item type and item format are general features, whereas the stimulus content 
that varies between items within a certain type and format are item-specific 
features. Traditional item development is concerned primarily with specifying 
general features. However, the cognitive design system approach also involves 
giving substantial attention to the specific features. 

Next, a cognitive theory is developed to relate the item features to cognitive 
processes and item difficulty. Most ability and achievement test items are com­
plex, requiring multiple stages of information processing to arrive at a solution, 
each of which is influenced by one or more specific item features. This step in the 
cognitive design system approach most likely will include a review of research on 
similar and related tasks that have been studied by cognitive psychology meth­
ods. For example, the difficulty of paragraph comprehension items is impacted by 
both vocabulary level and syntax, which influence the difficulty of encoding text 
meaning (Gorin, 2005). Other features influence the difficulty of different stages, 
such as text mapping and decision difficulty. This step in test development often 
involves research to further examine the impact of some specific features on item 
complexity. The end result is a postulated cognitive model that represents the 
sources of cognitive complexity in the items. 

RESEARCH ON THE THEORETICAL FRAMEWORK. The postulated cognitive model 
must be evaluated for empirical plausibility. Item performance is modeled from 
variables that represent the sources of cognitive complexity in the model. The 
dependent variable is item performance, which includes item response accuracy 
and response time, as well as item response theory (IRT) parameters, such as 
item difficulty and item discrimination. The independent variables are the 
scored features of items that represent sources of processing difficulty as deter­
mined in the preceding step. The plausibility ofthe cognitive model is evaluated 
by the overall predictability of item performance and by the specific impact of 
the various sources of cognitive complexity in the items, as indicated by the esti­
mated weights ofthe cognitive variables. These weights can be used not only to 
explain current item performance, but also to provide predictions ofthe proper­
ties of new items. Thus, to summarize this stage, the following relationship is 
developed: 

Stimulus features—^Process difficulty-^Item properties. 

To test the model, ideally a cognitive IRT model is applied to item response data 
that were collected on a large set of items administered to an appropriate sam­
ple. Cognitive IRT models include interpretable parameters for the cognitive 
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model variables, as well as associated indices to evaluate overall fit ofthe data 
to the model. Further, the parameters in the cognitive IRT models are useful for 
item banking. Unfortunately, raw item responses often cannot be made avail­
able for operational tests. Although regression modeling can be applied by using 
item difficulty and discrimination estimates obtained from traditional IRT 
models as the dependent variables, there are some disadvantages. Because the 
number of observations equals the number of items in the regression modeling 
approach, the standard errors for the cognitive model variables are often rela­
tively large. 

Next, the plausibility ofthe cognitive model as a basis for item generation is 
tested by systematically varying the sources of cognitive complexity. Appropriate 
studies may vary items on only a single feature of the model or simultaneously 
vary several sources of cognitive complexity. If raw item response data are avail­
able, cognitive psychometric models (see the next section) may be applied to esti­
mate the impact ofthe cognitive model variables on item properties. 

ITEM DESIGN, ITEM GENERATION, AND ITEM BANKING. If the preceding stages 
are successful, the properties can then be used for item generation and for item 
banking. Test specifications can be based on the cognitive model variables to 
include only those sources of complexity that are consistent with the purposes 
of measurement. Further, items can be banked by the levels and sources of cog­
nitive complexity using the predicted difficulties from the cognitive psycho­
metric model. Finally, for some types of items, automatic item generators can 
be developed by incorporating the various combinations of sources of complex­
ity into structures that produce items and estimate expected item properties. 

Advantages ofthe Cognitive Design System Approach 

Developing items with the cognitive design system has several advantages. 
First, constmct validity is explicated at the item level. The relative weights of 
the underlying sources of cognitive complexity represent what the item mea­
sures. Messick (1995) described this type of item decomposition as supporting the 
substantive aspect of constmct validity. Second, a plausible cognitive model pro­
vides a basis for producing items algorithmically. Items with different sources of 
cognitive complexity can be generated by varying aspects ofthe cognitive model. 
These variables also have potential to be embedded in a computer program to 
generate large numbers of items with predictable psychometric properties. 
Third, test design for ability tests can be based on features that have been sup­
ported as predicting cognitive complexity and item psychometric properties. 
That is, the test blueprint can be based on stimulus features of items that have 
empirical support. Fourth, the empirical tryout of items can be more efficiently 
targeted. Typically, item banks have shortages of certain levels of difficulty. By 
predicting item properties such as item difficulty, only those items that corre­
spond to the target levels can be selected for tryout. Furthermore, items with 
constmct-irrelevant sources of difficulty can be excluded from tryout. Fifth, pre­
dictable psychometric properties can reduce the requisite sample size for those 
items that are included in an empirical tryout (Mislevy, Sheehan, & Wingersky, 
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1993). The predictions set prior distributions for the item parameters, which con­
sequently reduce the need for sample information. Under some circumstances, 
predicted item parameters function nearly as well as actually calibrated param­
eters (Bejar et al., 2003; Embretson, 1999). Sixth, a successful series of studies 
for the cognitive design system approach can provide the basis for adaptive item 
generation. That is, rather than selecting the optimally informative item for an 
examinee, instead the item is generated anew based on its predicted psycho­
metric properties, as demonstrated by Bejar et al (2003). Finally, score interpre­
tations can be linked to expectations about an examinee's performance on specific 
types of items (e.g., Embretson & Reise, 2000, p. 27). Because item psychometric 
properties and ability are measured on a common scale, expectations that the 
examinee solves items with particular psychometric properties can be given. 
However, the cognitive design system approach extends this linkage because the 
item solving probabilities are related to various sources of cognitive complexity 
in the items. Stout (2007) views this linkage as extending continuous IRT models 
to cognitive diagnosis, in the case of certain IRT models. Some of these models are 
presented in the next section. 

Overview of Cognitive Psychometric Models 

In cognitive psychometric models, substantive features of items are linked to 
item difficulty and other item parameters. These models include the linear logis­
tic test model (LLTM; Fischer, 1973), the two-parameter logistic constrained 
model (2PL-Constrained, Embretson, 1999), and the random effects linear logis­
tic test model (LLTM-R; Janssen, Schepers, & Peres, 2004). The hierarchical IRT 
model (Glas & van der Linden, 2003) is included as a cognitive model in this sec­
tion because it includes parameters for item families, which are groups of related 
items. The hierarchical IRT model becomes a cognitive model when the item fam­
ily consists of variants of an existing item that have differing surface features but 
the same underlying structure. The models are reviewed and compared with 
their counterparts in traditional IRT models. 

The least complex ofthe traditional IRT models is the Rasch model because 
items differ only in difficulty. If bi is the difficulty of item i and 8, is the ability of 
person j , then the probability that the personj passes item i, PiXy = 1), is given 
by the Rasch model as follows: 

Thus, the difference between the person's ability and the item's difficulty deter­
mines the probability of solving a particular item. If the ability exceeds the item 
difficulty, then the probability that the item is solved is greater than .50, and the 
probability becomes increasingly larger the more the ability exceeds item dif­
ficulty. If the item difficulty is greater than ability, then Equation 1 yields prob­
abilities smaller than .50. In applications of the model, item difficulties are 
estimated for each item. These values are then used for test equating and to 
estimate the abilities for examinees on a common scale. 
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The LLTM (Fischer, 1973) is a generalization of the Rasch model in which 
item difficulty is replaced with a model of item difficulty. The probability that 
person,/ passes item i, P(Xy = 1) depends on q*, the score of item i on stimulus fea­
ture k in the cognitive complexity of items, and j \ k is the weight of stimulus fea­
ture k in item difficulty. Thus, LLTM may be written as follows: 

exp 
P(Z,=l |e i ,q J ,T1)= x \ ^ ; J ' I . (2) (ft-Ztigg^*) 

l + expfei-Xj^TU 

In Equation 2, qa is unity and % is an intercept. Compared with Equation 1, item 
difficulty is replaced by a prediction from a weighted combination of stimulus 
features that represent the cognitive complexity ofthe item. Janssen, Schepers, 
and Peres (2004) added a random error term to the LLTM, so that the variance 
in item difficulty that is not accounted for by the model may be estimated. 

Another traditional IRT model is the 2PL model. In contrast to the Rasch 
model in Equation 1, the 2PL model includes a term, a;, to represent the discrim­
ination of item i on the latent trait. The probability that person./ passes item i 
in the 2PL is written as follows, where bk and fy are defined as in Equation 1: 

P(Z,=l |0 J ,6 , ,a i) = - ^ % l M - . (3) 
1 + exp (a,(Qj-bi)) 

A cognitive model version of the 2PL model, the 2PL-Constrained model 
(Embretson, 1999), includes cognitive complexity models for both item difficulty 
and item discrimination. In this model, gtt and qim are scores on stimulus features 
k and m in item i. Then, r|* is the weight of stimulus factor k in the difficulty of 
item i, xm is the weight of stimulus factor m in the discrimination of item /, and 8,-
is defined as in Equation 3. The 2PL-Constrained model gives the probability 
that person j ' passes item i as follows: 

l + ( e ^ S " i?4»T»K -Sw**1!*)) 

where qn is unity for all items and so Ti and r^ are intercepts. Compared with 
Equation 3, in Equation 4 both the item difficulty parameter bi and the item 
discrimination parameter a; are replaced with cognitive models. 

The hierarchical IRT model (Glas & van der Linden, 2003) is similar to the 
3PL IRT model because it includes item parameters for difficulty, discrimina­
tion, and guessing. In the 3PL model, the probability that person j passes item 
i is given as follows: 

PiXy^QjM^Ci^CiHl -Ci ) ^ ^ - ^ (5) 
l + exp(ai(Bj-bi)) 

where a*, &;, and 8,- are defined as in the 2PL model in Equation 3 and C; repre­
sents a lower asymptote, which is often considered to represent guessing effects. 
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In the hierarchical IRT model (Glas & van der Linden, 2003), the param­
eters represent a common value for a family of items rather than individual items. 
The family could represent items with the same underlying sources of difficulty 
but varying in surface features. For example, in mathematical word problems, 
the same essential problem can be presented with different numbers, actors, 
objects, and so forth. 

In the hierarchical model, the probability is given for person j passing item i 
from family p, and the item parameters are given for the item family, as follows: 

nfv ila u \ .Wi „ ^ exp(aip(8j-6ip)) . . 
P{Xyp = 1 1 8 ^ , 6 ^ ) = ̂  + ( l - s ) 1 + e x p M e j . _ M ) - (6) 

where a^ is item slope or discrimination of item family p, biP is the item difficulty 
of item family p, cip is lower asymptote of item family p, and 8, is ability. The 
model also includes parameters to estimate variability ofthe parameters within 
families. 

A Cogn i t ive Des ign Sys t em A p p r o a c h 
to M e a s u r i n g S p a t i a l Abi l i ty 

In this section, the steps involved in applying the cognitive design system 
approach to test development are illustrated with an application to a test of spa­
tial ability. A project to identify the substantive aspects of construct validity and 
to develop an item generator was undertaken for the AO test on the ASVAB. 
Some results from that project (Embretson, 2000) are described. 

Development ofthe Theoretical Framework 

This section describes how a theoretical framework for AO items was devel­
oped. This stage involved both literature reviews and an examination of previ­
ous research findings. 

GOALS OF MEASUREMENT. The first step is to identify the goals of measure­
ment underlying the construction ofthe AO test. The AO test was developed in 
Project A (Peterson et al., 1990), which had the general goal of increasing the 
predictability of job performance over the existing ASVAB subtests. More 
specifically, the AO test was constructed to measure spatial visualization abil­
ity, particularly the mental rotation aspect, which was not represented directly 
in the other ASVAB subtests. That is, the AO test was intended to measure a 
person's ability to mentally rotate objects and anticipate their appearance in a 
new orientation. Lohman's (2000) review indicated that tasks similar to the AO 
items measure a general spatial visualization ability, which factor analytic 
studies often find as indistinguishable from general fluid intelligence (i.e., non­
verbal reasoning). According to Lohman (2000), rotation is best distinguished 
by highly speeded two-dimensional rotation tasks or by three-dimensional 
rotation tasks. The AO task as shown in Figure 11.1 is more complex than 
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two-dimensional rotation tasks because it involves many figures or pieces that 
vary in several other features as well as in spatial orientation. Further, AO 
items are not administered as a speeded test. Thus, it seems plausible that AO 
items may measure aspects of intelligence beyond the rotation component of 
spatial ability. 

TASK FEATURES. Next, the general and the specific features of the AO 
task were identified. The general features of an AO task consist of (a) a two-
dimensional representation of assembled objects and pieces, (b) a stem that con­
sists of pieces that can be assembled into an object, (c) a drawing of the object 
that can be assembled from the pieces, (d) three drawings of objects that cannot 
be assembled from the pieces (i.e., the distractors), (e) a multiple-choice decision 
format, and (f) responses that are displayed linearly to right of the stem. One 
important implication of the general task features is that processes to repre­
sent decisions about response alternatives are needed because the objects are 
presented in a multiple-choice format. Another implication is that the distance 
ofthe key from the stem may vary substantially, which could be an important 
source of between-item differences. Finally, item size should be constant regard­
less oftest presentation mode (i.e., paper and pencil, computerized) because object 
comparisons are involved. The perception ofthe object differences is influenced 
by object display size. 

Specific features in the stems of AO items include the number of pieces and 
the regularity ofthe piece shapes, as well as the dispersion and orientation ofthe 
pieces in the stem compared with the assembled object. Specific features of the 
response alternatives include the distance ofthe correct response from the stem 
as well as the similarity ofthe distractors to correct response. Specific features 
potentially have importance for a cognitive model of the task to predict differ­
ences in item difficulty and response time. 

LITERATURE SEARCH. The next step is to review the literature for relevant 
cognitive research. Many studies are available on the impact of differences 
in object orientation in making comparisons (e.g., Just & Carpenter, 1985; 
Shepard & Feng, 1971). Mental models theory has been found applicable to 
explain performance on spatial tasks (Byrne & Johnson-Laird, 1989; Glasgow & 
Malton, 1999) as contrasted with a rule-based or inferential approach. However, 
complex spatial tasks often can be solved by more than one strategy. Specific to 
object assembly, it has been found that instructions can determine whether 
verbal or spatial processes are applied to the Minnesota Paper Form Board 
(Johnson, Paivio, & Clark, 1990). Another relevant literature from cognitive 
psychology concerns visual search tasks (Duncan & Humphreys, 1989). This lit­
erature provides information about visual display features that make visual 
search tasks more difficult, such as position displacement, figure orientation, 
and context. 

The most directly relevant background literature was a series of studies 
(Mumaw & Pellegrino, 1984; Pellegrino, Mumaw, & Shute, 1985; Pellegrino & 
Glaser, 1982) in which a cognitive model for AO tasks was developed. The postu­
lated cognitive model consisted of five processes: encoding, search, rotation, com­
parison, and response. Using a verification version ofthe AO task (i.e., true/false 
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item format), strong support for the process theory was foimd. Processing diffi­
culties were explicitly linked to stimulus features that varied between items to 
represent the postulated processes. Both item response time and error rates were 
modeled from item differences in the stimulus features. Strong empirical support 
for the cognitive model was obtained by mathematically modeling item response 
time and error rates at both the group and individual level. 

THE COGNITIVE MODEL. Embretson and Gorin (2001) generalized Mumaw 
and Pellegrino's (1984) cognitive process model to accommodate AO test items. 
The Mumaw and Pellegrino cognitive model required generalization because it 
was developed for a verification format rather than the multiple-choice format 
of AO test items. Thus, Embretson and Gorin (2001) added a two-stage decision 
process to the processing model. In a two-stage decision task, the examinee first 
attempts to falsify response alternatives by a fast, holistic process. Then, the 
nonfalsified alternatives are processed more extensively in an attempt to con­
firm the required features for the assembled object. Support for two-stage mod­
els has been foimd for other ability task items, such as inductive reasoning tasks 
(Pellegrino, 1982) and paragraph comprehension items (Embretson & Wetzel, 
1987). 

Figure 11.2 presents the postulated model for AO items. This model is simi­
lar to Embretson and Gorin's (2001) model, although the details of processing 
differ somewhat, especially for the confirmation process. Like Mumaw and 
Pellegrino (1984), the postulated cognitive model combines elements of visual 
search with spatial manipulation. The first stage is encoding ofthe stem ele­
ments. Encoding difficulty is postulated to be influenced by the number and the 
complexity of the pieces in the stem. Piece complexity, in turn, is influenced by 
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Figure 11.2. The cognitive model. 
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the number of edges and curves, as well as by the availability of verbal labels to 
describe the piece (i.e., circle, triangle, etc.). The second stage is falsification, in 
which the examinee is postulated to search for response alternatives with grossly 
inappropriate features, such as the wrong number of pieces and obviously mis­
matched pieces compared with the stem. This stage involves a visual search 
process, and it is hypothesized to be relatively easiest as the dissimilarity 
between the stem and the distractor pieces increases (Duncan & Humphreys, 
1989). The falsification process is hypothesized to be self-terminating within 
alternatives, such that processing of a response alternative ceases when a mis­
match is detected. It is also postulated that falsification processing is exhaustive 
between alternatives, such that all response alternatives are checked. 

The last stage in Figure 11.2 is the confirmation process, which is hypothe­
sized to be applied only to the nonfalsified alternatives. This stage involves 
searching, rotating, and comparing shapes between the stem and the response 
alternative. The difficulty of the search process is generally determined by the 
similarity ofthe target to the pieces in the response field (Duncan & Humphreys, 
1989). Therefore, the difficulty of the search depends on the displacement and 
orientation of the piece in the alternative relative to its position in the stem. 
Further, the difficulty of comparing shapes depends on the angular disparity 
between corresponding but mismatching pieces. Thus, difficulty is determined by 
the number of displaced pieces, the number of rotated pieces, and the number of 
pieces mismatched by small angular disparities. The difficulty of confirming the 
pieces in the correct response is hypothesized to increase as the distance of the 
stem from the correct response increases. With increasing distance, separate eye 
fixations are required to compare objects as presented on computer monitors and 
thus increasing the role of mental imagery or other representational processes. 
Finally, the difficulty ofthe search and comparison processes for distractors also 
increases with the expected number of comparisons to detect a mismatched piece. 
That is, item difficulty and response time are hypothesized to increase with the 
number of comparisons. The confirmation process is postulated to be applied 
exhaustively to the nonfalsified response alternatives, including the case in which 
the correct response is the only remaining nonfalsified alternative. 

Research on the Theoretical Framework 

The following sections present a description of the methods underlying the 
reanalysis ofthe Embretson and Gorin (2001) data. 

PLAUSIBILITY OF THE COGNITIVE MODEL FOR AO ITEMS ON THE ASVAB. 
Embretson and Gorin (2001) presented results that supported many aspects of 
a model similar to Figure 11.2. Item response time and item difficulty were mod­
eled by variables that represented the complexity of the various processing 
stages using hierarchical regression. However, the final hierarchical regression 
models did not support two major variables that were postulated to represent 
spatial processes in the confirmation stage, the number of displaced pieces, and 
the number of rotated pieces. Although the variables had significant correla­
tions with both item difficulty and mean item response time, they did not have 
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significant weights in the final regression model. Embretson and Gorin (2001) 
attributed these results to the incidental correlations ofthe number of displaced 
pieces and the number of rotated pieces with other cognitive model variables. 
Intercorrelation among independent variables in a cognitive model is an inher­
ent limitation of modeling existing tests because they are not designed to isolate 
the independent effects of design variables. Other limitations involved in mod­
eling existing tests include smaller variances ofthe stimulus features and, fre­
quently, the availability of only item statistics for modeling, which decreases the 
power to find effects. 

In the study reported in the following section, two data sets with different 
items were available. This design permits the plausibility ofthe cognitive model 
to be assessed on each data set individually and jointly and hence may counter­
act some of the disadvantages of modeling items from a single existing test. 
Three dependent variables were examined: item difficulty, item discrimination, 
and mean item response time. These dependent variables have different sources 
of importance for the model. First, item difficulty is a major dependent variable 
both cognitively and psychometrically. Cognitive complexity in the various pro­
cessing stages is hypothesized to increase the likelihood of errors and hence 
impact item difficulty. Second, item discrimination is an important psychomet­
ric variable that indicates the strength of relationship of item responses to the 
latent trait. Sources of cognitive complexity in items associated with decreased 
item discrimination lead to increased measurement error for the latent trait. 
Third, mean item response time has two sources of importance: establishing the 
cognitive processing model and providing psychometrically relevant informa­
tion for test equating. The plausibility of the model variables as influencing 
processes is supported if the variables contribute to predicting response time. 
That is, if a process occurs, then stimulus features that impact its difficulty will 
also impact response time. Psychometrically, mean item response time provides 
some important auxiliary information for test equating including equating 
adaptive tests. Tests are usually constrained so that the number of items and 
the maximum testing time is constant across examinees. Despite careful equat­
ing for psychometric properties based on modeling item response accuracy, 
administering too many items that are associated with longer response times 
can lead to insufficient testing time and consequently lowered scores on a par­
ticular test form. 

Method 
Tests and item bank. All items were from the AO item bank on the ASVAB. 

Several different outer shapes are found in the item bank, including squares, 
circles, rectangles, hexagons, and triangles, as well as distorted versions of 
these shapes (i.e., ovals, flat hexagons, etc.). All items that were available for 
this study had been administered by computer. 

Design. Although raw item response data were not available, item param­
eter estimates for the 3PL model and mean item response times were available 
for two different data sets. The 3PL-model parameter estimates for the new 
items had been through common items. The mean response times were not 
explicitly linked. However, they can be regarded as randomly equivalent 
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because items (or whole tests) were randomly assigned to examinees in both 
data sets. 

For the Fixed Content Test data set, examinees were administered one of 
four forms following an operational administration of the ASVAB. Each test 
form consisted of 25 unique items and 8 linking items that were repeated on at 
least one other form, for a total of 115 items. For the Seeded data set, which had 
been modeled previously by Embretson and Gorin (2001), individual items were 
administered in the context of an adaptive AO test from the ASVAB tests. A 
total of 149 items were seeded randomly within operational adaptive tests based 
on the calibrated item bank. Item parameters for the Seeded data set were 
linked to the item parameters for the operational AO items. Thus, data for a 
total of 264 items were available for the cognitive models. 

Participants. The participants were military recmits who were taking the 
ASVAB. The Fixed Content Test was administered to 9,321 examinees, who 
were randomly assigned to one ofthe four test forms. The participants were told 
that their scores would not count. For the Seeded data set, the item calibrations 
were based on approximately 1,500 examinees per item. Thus, for each item, 
very stable estimates of item parameters and response times were available. 
Although participants were told that some items would not count, no informa­
tion was given about which items were seeded. 

Cognitive model variables. The cognitive model variables were scored for 
every item in both data sets. The difficulty of encoding the item stem was mod­
eled by four variables as follows: (a) number of pieces—the number of shapes; 
(b) number of edges—the total number of edges in all pieces; (c) verbal labels— 
the number of pieces with verbal labels (i.e., circles, right triangles, hexagons, 
pyramids, etc.); and (d) curved pieces—the number of pieces with curved edges. 
The difficulty of falsification was represented by a single variable: falsifiable 
distractors—the number of distractors falisified by gross mismatch (i.e., num­
ber of pieces, piece size, number of edges in the shapes). The difficulty ofthe con­
firmation process was represented by the following five variables: (a) displaced 
pieces—the number of pieces differing in position from the stem to the correct 
response, (b) rotated pieces—the number of pieces differing in orientation 
between the stem and the correct response, (c) target distance—the distance of 
the correct response from the stem, (d) small angles—a binary variable indicat­
ing small angular disparities in the mismatch of pieces in the distractor to the 
pieces in the stem, and (e) number of cycles—the expected number of compari­
son cycles to disconfirm the closest nonfalsifiable distractor. The latter variable 
was scored from the number of pieces in the closest distractor that are mis­
matched to the stem. If all pieces are mismatched, then only one comparison is 
required to reject the distractor. If only one piece is mismatched, then more com­
parison cycles are expected, depending on the number of pieces. Thus, the 
expected number of comparison cycles E[c] required to detect a mismatched 
piece was estimated by the following mathematical model: 

E[c) = Tx[b/(p-x))[l-c^P c ,x} 
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where p is number of pieces, b is the number of mismatched pieces, x is the 
number of cycles, and P „ is the probability that the number of cycles equals x. 
Compared with Embretson and Gorin's (2001) analysis of AO items, all vari­
ables were identical except target distance, which was added to reflect spatial 
processing difficulty in comparing the correct response to the stem. 

Results 
Descriptive statistics. Because both data sets were from empirical tryouts, 

items with discriminations less than .80 were trimmed to avoid modeling poor 
quality items. Thus, the models are based on 104 and 128 items, respectively, 
for the Fixed Content Test and the Seeded items. The means were compared 
between tests with a multivariate analysis of variance. For the dependent vari­
ables, item difficulty, item discrimination, and response time, the means differed 
significantly overall between tests (Wilk's A - .202), F(Z, 228) = 300.845, p < .001, 
with a large effect size (r|2 = .798). The univariate tests indicated that the means 
for item difficulty, K l , 230) = 14.046,p < .001, and item discrimination, F(l, 230) 
= 11.975, p = .001, were significantly higher on the Fixed Content Test, although 
the effect sizes were small (TI2 < .058). The mean for response time, F(l, 230) = 
323.333, p < .001, was higher on the Seeded items and the effect size was large 
(TI2 = .584). 

The means of the cognitive model variables also differed between tests 
(Wilk's A = .814), F(10,220) = 5.035, p < .001, with a small effect size (TI2 = .186). 
The univariate tests indicated that the means for curved pieces, F(l, 229) = 
8.247, p = .004, and mismatched angles, F(l, 229) = 8.344, p = .004, were greater 
on the Fixed Content Test, whereas the mean for rotated pieces, F(l, 229) = 
5.706, p = .018, was greater on the Seeded items. All effect sizes were small Of < 
.035). The Box M test indicated that the covariances between the independent 
variables also varied significantly across tests (p < .001). Thus, the tests did not 
represent the AO design variables equivalently. 

Item difficulty was significantly correlated with most independent variables 
in both data sets. It had significant positive correlations with number of pieces, 
number of edges, displaced pieces, target distance, number of cycles, and small 
angles, and significant negative correlations with the verbal labels and falsifiable 
distractors. Additionally, item difficulty had a significant positive correlation 
with rotated pieces in the Seeded items. In contrast, item discrimination was not 
highly correlated with the independent variables. No significant correlations 
were observed with any independent variable in the Fixed Content Test, but sig­
nificant negative correlations were observed with curved edges and small angles 
in the Seeded items. In both data sets, response time had significant positive 
correlations with number of pieces, angles, and number of cycles, and significant 
negative correlations with verbal labels and falsifiable distractors. Further, 
response time had significant positive correlations with rotated pieces and dis­
placed pieces for the Seeded items, but not for the Fixed Content Test. 

Cognitive models. The three dependent variables—item difficulty, item 
discrimination, and mean item response time—were modeled separately for 
both data sets using hierarchical regression. Then, the data sets were modeled 
jointly using stmctural equation modeling. 
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For the hierarchical regression analyses, the independent variables were 
ordered by the postulated temporal ordering ofthe stages of encoding, falsifica­
tion, and confirmation. Item difficulty had strong and similar patterns of pre­
dictability by processing stage for both the Fixed Content Test (R = .70, p < .01) 
and the Seeded test items (R = .68;p < .01), and each stage significantly increased 
prediction for both tests. However, the details ofthe model, the regression coeffi­
cients that represent unique impact for each variable, differed across data sets. 
The only independent variable that was consistently significant across data sets 
was target distance, which had a positive regression coefficient. Only number of 
pieces, rotated pieces, displaced pieces, and target distance had significant 
regression coefficients (p < .05) for the Fixed Content Test items, and only target 
distance, small angles, and number of cycles had significant regression coeffi­
cients for the Seeded items. 

Item discrimination was not highly predictable in either data set. The cogni­
tive model did not significantly predict item discrimination for the Fixed Content 
Test items, although statistical significance was achieved for the Seeded items 
(R - .41, p < .05). The only variable in the model with a significant regression 
coefficient was curved pieces, with a significant negative weight, whereas small 
angles had a marginally significant weight. 

For mean item response time, moderate prediction from the cognitive model 
variables in the Fixed Content Test items (R = .62, p < .05) and stronger predic­
tion in the Seeded items (R - .74, p < .01) was observed. As for the item difficulty 
model, each processing stage had a significant increment to prediction, thus sup­
porting the necessity of each stage. Also similar to item difficulty, the details 
of the model varied across data sets. Significant regression coefficients were 
obtained for falsifiable distractors, rotated pieces, displaced pieces, and target 
distance for the Fixed Content Test and for the number of pieces, number of 
edges, verbal labels, and number of cycles for the Seeded items. 

Stmctural equation modeling was applied to further understand the differ­
ences between the two tests. The covariance matrices differed significantly (%2 = 
253.883, df= 91; p < .001). However, because the overall test reflects both differ­
ences in variances and covariances between tests, a merged regression model 
may fit adequately if the tests differ primarily in the variances rather than in the 
independent to dependent variable regressions. Thus, a multiple group struc­
tural equation model was specified to build a common regression model for the 
three dependent variables across the two data sets. The variances and covari­
ances between the independent variables were freely estimated within tests, but 
the regression coefficients for the cognitive model variables were constrained to 
be equal across tests. Although the model did not fit statistically (x2 - 71.877, 
df= 30; p < .001), the comparative fit index (CFI) exceeded the recommended 
minimum level of .95 (CFI = .959) and the root mean square residual (RMR) was 
smaller than the recommended level of less than .05 (RMR = .046). Thus, good fit 
was obtained for the common regression weights. 

Table 11.1 presents the common regression weights for each dependent vari­
able. For item difficulty, the cognitive model variables with significant coeffi­
cients were in the expected direction. That is, significant positive regression 
coefficients were found for number of pieces, rotated pieces, displaced pieces, and 
target distance, although significant negative regression coefficients were found 
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Table 11.1. Regression Coefficients for Cognitive Model Constrained Across Samples 

Variable 

Number of pieces 
Number of edges 
Curved pieces 
Verbal labels 
Falsifiable distractors 
Rotated pieces 
Displaced pieces 
Target distance 
Small angles 
Number of cycles 

Difficulty 

B 

.171" 

.000 
-.014 
-.079" 
-.106" 

.113** 

.040* 

.082** 

.077 

.051 

SEB 

.040 

.005 

.013 

.018 

.040 

.033 

.016 

.018 

.064 

.047 

Response 

B 

.514+ 

.160** 
-.092 
-.456** 
-.126 

.553* 

.319* 

.187 

.172 

.684** 

time 

S£B 

.275 

.036 

.091 

.118 

.261 

.229 

.129 

.121 

.423 

.289 

Discrimination 

B 

.053 

.000 
-.033** 
-.007 
-.012 
-.009 
-.018 

.010 
-.086* 
-.030 

S£B 

.032 

.004 

.011 

.014 

.031 

.027 

.015 

.014 

.050 

.034 

tp < .10. *p < .05. "p < .01. 

for verbal labels and falsifiable distractors. Number of edges, curved edges, small 
angles, and number of cycles did not have significant unique relationships with 
item difficulty. For mean item response time, the significant coefficients for the 
model variables were also in the expected direction. Significant positive regres­
sion coefficients were found for number of pieces, number of edges, rotated 
pieces, displaced pieces, and number of cycles, whereas a significant negative 
regression coefficient was found for verbal labels. Falsifiable distractors, target 
distance, curved pieces, and small angles did not have significant unique corre­
lations with item response time. Finally, for item discrimination, the only signif­
icant predictor variable was curved pieces, which had a negative weight. Also, 
small angles had a marginally significant negative weight. 

Discussion 
The results from the two data sets strongly support the plausibility of the 

cognitive model for the AO items. Moderate to strong prediction was obtained 
for item difficulty and mean item response time in the full cognitive model. 
Approximately 50% ofthe variance in the dependent variables was explained by 
the model. This level of prediction for item difficulty provides a sound basis for 
item generation. Simulation studies have shown that prediction of item param­
eters at this level leads to only modest increases in measurement error if pre­
dicted item parameters are substituted for calibrated parameters (Embretson, 
1999; Mislevy, Sheehan, & Wingersky, 1993). Further, all three global process­
ing stages in the cognitive model—encoding, falsification, and confirmation-
were supported. That is, significant incremental contributions to prediction 
were found for the variables that represent cognitive complexity of the three 
stages in the hierarchical regression analysis in both data sets. Thus, at a gen­
eral level, as in Embretson and Gorin (2001), the plausibility of the cognitive 
model is supported. 

However, as a basis for item design, it is also important to understand the 
impact ofthe specific sources of complexity in each processing stage. These vari-
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ables can potentially be varied to create new items with target levels and 
sources of difficulty. Embretson and Gorin's (2001) analysis did not provide 
clear support for the role of specific variables within processing stages. Similar 
findings were obtained in this study from the separate models for the two data 
sets. However, the merged cognitive models across data sets supported the 
expected role for most independent variables for item difficulty and mean item 
response time. These results contrast sharply with Embretson and Gorin's 
(2001) analysis, in which significant unique impact was not found for some 
major variables (e.g., rotated pieces, displaced pieces). The most plausible expla­
nation is the increased power ofthe current study, which results from both the 
increased number of observations and the method of analysis that was more 
robust across the incidental correlations among the independent variables. 

For the encoding stage, the number of pieces in the stem was significantly 
associated with both increased item difficulty and mean item response time, as 
expected. Also as expected, pieces in the stem that were easily labeled verbally 
were associated with significantly less difficulty and response time. The num­
ber of edges in the pieces, on the other hand, was associated with significantly 
increased response time but not with increased item difficulty. 

For the falsification stage, the number of falsifiable distractors was signifi­
cantly related to decreased item difficulty but not to significantly decreased item 
response time. These results are only partially expected from the cognitive model 
presented in Figure 11.2. Both decreased item difficulty and item response time 
were expected from the model in which falsification is hypothesized to result in 
the elimination of some distractors from further processing and the continued 
processing of nonfalsifiable distractors. 

For the confirmation stage, the two variables that represent spatial pro­
cessing, the number of displaced pieces and rotated pieces, had significant posi­
tive weights in the models for both item difficulty and mean item response time. 
Further, the distance ofthe correct answer from the stem was a significant pre­
dictor of item difficulty, as expected. These results support the hypothesis that 
increased spatial and imagery processing is required as the pieces cannot be 
viewed in a single eye fixation. Finally, the expected number of comparison 
cycles to reject the closest distractor significantly increased processing time, as 
expected. 

In summary, all but two cognitive model variables had significant impact 
for either item difficulty or item response time. Thus, the role of most variables 
in the cognitive model was strongly supported, which supports their potential to 
be varied in generating items to target sources and levels of complexity. It is 
interesting that the two independent variables that were not related to item dif­
ficulty or item response time were related to item discrimination. That is, the 
number of curved pieces in the stem and the number of distractor pieces with 
small angular disparities compared with the stem were related to decreased 
item discrimination. 

PLAUSIBILITY OF THE COGNITIVE MODEL FOR ALGORITHMICALLY GENERATED 
ITEMS. The cognitive models in the preceding studies support the possibility of 
developing item specifications for AO items that are based on cognitive process­
ing characteristics. The overall processing model provided moderately strong 
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prediction of item difficulty and mean item response time. The impact ofall three 
processing stages was supported. Therefore, in the current study, item specifica­
tions based on all three stages were developed to generate a new set of AO items. 
To the extent that the empirical properties ofthe new items are predictable from 
the cognitive model, support would be obtained for generating items with target 
levels and sources of processing complexity. 

In this study, a large number of AO items were generated by crossing the 
sources of processing difficulty, encoding, falsification, and confirmation. One 
goal of this study was to evaluate the cognitive model as a basis for generating 
AO items. Another goal was to examine the independent impact ofthe cognitive 
model variables in an experimental design. In contrast, the cognitive model was 
examined in the preceding study on existing items in which the variables had 
incidental correlations, which can lead to confounded effects. 

A final goal was to estimate the weights for the cognitive model with a sta­
tistically more appropriate modeling approach than was used in the preceding 
study. Model-based IRT approaches, such as the cognitive IRT models that were 
reviewed previously, have several advantages compared with the hierarchical 
regression modeling that was applied in the preceding study. First, the results 
interface with contemporary item banking because IRT parameters are esti­
mated. IRT parameters are useful for test equating and computerized adaptive 
testing. Second, the standard errors for the estimated cognitive model param­
eters generally will be smaller. The standard errors in LLTM and the 2PL-
constrained model are based on the full data set (i.e., raw item responses), 
whereas in the hierarchical regression analysis the standard errors depend on 
the number of items. Third, the estimated weights for the cognitive variables are 
statistically more justifiable when they depend on the amount of available data. 
In typical item tryouts, some items and combinations of independent variables 
have more data available than other combinations. The hierarchical regression 
estimates used in the preceding study were obtained without regard to the num­
ber of cases on which the item difficulties were estimated. In contrast, model-
based IRT parameter estimates depend on the amount of available data. In the 
current study, a full information model-based IRT approach was possible 
because raw item response data were obtained. 

Method 
Item development. Because a very large number of items can be generated 

by crossing the levels ofthe variables in a cognitive model, a restricted set of fea­
tures was specified in the current study. First, only three frame shapes for the 
assembled objects were specified: squares, circles and triangles. Second, for all 
items, three or more lines (i.e., radiants) were drawn from a single centerpoint to 
each side. To define reference points for drawing the objects, a 3 x 3 grid, span­
ning the height and the width of each object frame, was overlaid on each object 
frame. The location ofthe centerpoint in terms ofthe grid was counterbalanced 
across items. Third, each radiant was projected to a different side unless the 
number of radiants exceeded the number of sides. In the latter case, two radiants 
must be projected to the same side. With this set of drawing constraints, the 
number of pieces equals the number of radiants. Fourth, two types of distractors 
were constructed. In comparison with the correct response, either the center-
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point was moved or the attachment point of one radiant was moved. This vari­
able was counterbalanced across items. 

Variables from all three stages, as defined in the preceding study, were 
manipulated to design the source of cognitive complexity in the items. A total of 
48 unique item stmctures were specified by crossing Encoding (3) x Falsification 
(4) x Rotation (2) x Displacement (2). For encoding, the three levels were defined 
by the number of pieces, ranging from three to five. For falsification, the four lev­
els consisted ofthe number of falsifiable distractors, ranging from zero to three. 
For both rotation and displacement, the two levels were present versus absent. 
Items were generated for all 48 structures using circles and rectangles, for a total 
of 96 items. However, to maintain perceptual quality, triangles were not used in 
the full set of structures. That is, triangle items with five pieces were confusing 
perceptually, so the triangles were used with only the 32 structures that had 
three or four pieces. Thus, 128 items were generated from the item stmctures. 
An additional 14 items were constructed to represent special combinations of 
design features involving salient verbal labels. 

Cognitive model variables. Scores for the cognitive model variables were 
obtained from the item specifications and drawing constraints, as follows: 
(a) number of pieces was scored as the number of radiants in a shape, (b) falsifi­
able distractors was scored by the number of distractors with large changes as 
described previously, (c) verbal labels was scored directly from the number of 
pieces and frame type (i.e., because ofthe drawing constraints, the only shapes 
with labels were triangles and wedges), (d) rotated pieces was scored as a binary 
variable defined by the item design as described previously, (e) displaced pieces 
was scored as a binary variable defined from the item design, (f) target distance 
was scored as the position ofthe key, (g) small angles was scored as the propor­
tion of shapes in the closest distractor that were mismatched by small angular 
disparities (1.00 for small centerpoint changes; 2/[the number of pieces], for 
small radiant changes; 0, otherwise), and (h) number of cycles was computed 
from the number of mismatched pieces in closest nonfalsifiable distractor (0, if all 
distractors are falsifiable; 2, for radiant attachment changes; the number of 
pieces for centerpoint changes). 

Two cognitive model variables were not included in the current study. 
Curved pieces were not included because the only curves permitted under 
the drawing constraints were the edges of circle shapes. Thus, curved pieces 
were entirely dependent on stem shape. Number of edges, on the other hand, 
depended completely on stem shape and the number of pieces, because interior 
shapes were not permitted. Thus, these variables have limited meaning, given 
the drawing constraints. Furthermore, neither variable had a significant weight 
in the merged model of item difficulty in the preceding study. 

Participants. The participants were 321 undergraduates at a large mid-
western university. They were participating to fulfill a course requirement. 
Approximately equal numbers of men and women were tested. 

Test design. To allow each participant to complete the items within a half-
hour session, test forms with 45 or 46 items each were constructed. Each test 
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form contained 32 common items, which represented a counterbalanced version 
ofthe design conditions. Each test form also contained 13 or 14 unique items. 
Thus, the full sample data is available for 32 items, whereas the remaining items 
were administered to subsets ofthe sample. A total of eight test forms were con­
structed to administer all the items. 

Procedure. Participants were randomly assigned to a test form. All test 
forms were administered by computer in a laboratory of five computer stations. 
Items were administered without time limits and both item responses and item 
response times were recorded. Testing was completed within a half hour for all 
participants. 

Results 
Psychometric characteristics. Because this study is the first empirical tryout 

of the algorithmically generated items, psychometric quality was assessed. Of 
the 142 items in the study, 90.6% had biserial correlations greater than .25, 
which indicates that the new items were generally performing well against inter­
nal criteria. The items with low biserial correlations were eliminated from fur­
ther analysis, as well as the 14 items that represented special combinations of 
design features. For the remaining 111 items, the mean biserial correlation was 
moderately high (M = 0.56, SD = 0.17), indicating that the items were sufficiently 
discriminating. The mean p value was also high (M = .76, SD = .14), indicating 
that the test was relatively easy for the sample of college students. 

Descriptive statistics. The means for the independent variables were com­
pared with the means in the preceding study using a standardized effect size (d). 
The means and standard deviations in the preceding study were averaged to 
serve as the comparison set. The means for the dependent variables were not 
compared because of differences in anchoring the IRT estimates as well as differ­
ences in the testing populations. 

For the encoding variables, number of pieces (d = .36) and verbal labels (d = 
.35) were all smaller in the current study. The mean of falsifiable distractors was 
also substantially smaller (d = -.78) in the current study. For the confirmation 
variables, target distance (d = -.03) and small angles (d = .10) were approxi­
mately equal between the two studies. However, displaced pieces (d = .67) and 
number of cycles (d ~ .27) were greater in the current study, whereas rotated 
pieces was substantially less in the current study (d = -1.08). Thus, the experi­
mental design ofthe items in the current study led to different levels on several 
cognitive model variables. The direction of some differences, based on the corre­
lations in the preceding study, could be expected to increase item difficulty (i.e., 
verbal labels, falsifiable distractors, displaced pieces, and number of cycles), 
whereas other differences could be expected to decrease item difficulty (number 
of pieces and rotated pieces). These differences also could impact the levels of pre­
diction of item properties that are obtained. 

Correlations between the variables were then examined. Item difficulty and 
item response time were moderately intercorrelated (r = .46). For the encoding 
process variables, the number of pieces had significant positive correlations with 
both item difficulty and mean item response time. Compared with the preceding 
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study, the magnitudes are somewhat smaller. The correlations of verbal labels 
with item difficulty and mean item response time were not significant. In con­
trast, in the preceding study, verbal labels had significant negative correlations 
with both item difficulty and mean item response time. Falsifiable distractors 
had significant negative correlations with both item difficulty and response time, 
which was somewhat smaller than the correlations in the preceding study. For 
confirmation, rotated pieces, target distance, and number of cycles had signifi­
cant positive correlations with both item difficulty and item response time, 
whereas displaced pieces had a significant positive correlation only with item dif­
ficulty, which was consistent with the preceding study. The positive correlations 
of rotated pieces with item difficulty and item response time were also consistent 
with the preceding study, although somewhat higher in the magnitude. Finally, 
small angles had a significant negative correlation with item difficulty, which is 
inconsistent with the previous study because the correlations had been positive. 
Thus, with one exception, the correlations ofthe cognitive model variables were 
generally consistent between the newly generated items and the items in the pre­
ceding study, although somewhat different in magnitude. 

Cognitive models. Full information models were applied to estimate the 
impact ofthe cognitive model variables on both item difficulty and item response 
time. A set of comparison models were included to examine fit. 

For item difficulty, the impact ofthe cognitive model variables was estimated 
by fitting the LLTM and the 2PL-Constrained model to the data. Estimates for 
the model parameters were obtained using a nonlinear mixed modeling proce­
dure with random effects (i.e., the SAS NLMIXED program) on the common 
items. The measurement scale was identified by specifying a standard normal 
distribution of ability (0~N(O,1)). Three comparison models were also estimated 
with the nonlinear mixed modeling procedure: (a) the Rasch model, in which sep­
arate difficulties are estimated for each item; (b) the 2PL model, in which diffi­
culty and discrimination are estimated for each item; and (c) a null model, in 
which all items are equally difficult and discriminating. 

Several indices of fit were examined including a x2 test of model differences, 
the Akaike Information Criterion (AIC) index, and an incremental fit index. The 
X2 test is obtained from the difference in -2 times the log likelihood between 
alternative models. This difference indicates whether or not the models differ 
statistically in explaining the data. The difference in the number of parameter 
estimates is the degrees of freedom. In contrast, the AIC index gives credit for 
parsimony, as its magnitude depends on both the likelihood ofthe data and the 
number of parameters in the model. Accordingly, the model with the smallest 
AIC is the best model. The incremental fit index (A1 ;̂ Embretson, 1997) is based 
on the log likelihoods of alternative models. The index compares the improve­
ment of fit for a model over a null model with relative to a saturated model. The 
index is similar in magnitude to a multiple correlation. 

The chi-square tests and the AIC index were inconsistent in indicating 
whether item discrimination parameters were needed to model the data. The 
AIC was lowest for the Rasch model, indicating that it was the best overall 
model. Because the Rasch model does not include parameters to represent item 
differences in discrimination, it would seem that these parameters are not 
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needed. However, the chi-square tests indicated that including item discrimina­
tion parameters led to significantly better fit. That is, the 2PL model fit the data 
significantly better than did the Rasch model (%2ldf= 2.40, d/'= 31; p < .001), 
and the 2PL-constrained model fit the data significantly better than did LLTM 
(%2/df= 10.50, df= 8;p < .001). Because the results were not consistent, cogni­
tive models both with and without varying item discrimination parameters are 
presented. 

For the models without varying item discrimination parameters, the com­
parison of LLTM with the null model (x2/df= 141.87, df= 8;p< .001) was highly 
significant, indicating that the cognitive model significantly predicts item diffi­
culty. LLTM did not perfectly predict item difficulty, as indicated by a statisti­
cally significant difference from the Rasch model (x2/df= 17.39, df= 22;p < .001). 
However, the incremental fit index (A^2 = .850) indicated that substantial predic­
tion was obtained. 

For the model with varying item discriminations, the 2PL-constrained 
model, the comparisons were based on the 2PL model as the saturated model. 
The comparison of the 2PL-constrained model with the null model (x2/df = 
141.87, df= 16; p < .001) was highly significant, indicating that the cognitive 
model significantly predicted item difficulty. The 2PL-constrained model did not 
perfectly predict item difficulty and item discrimination, as indicated by a statis­
tically significant difference from the 2PL model (x2/d/'= 9.086, df= 46, p < .001). 
However, the fit index (Ay2 = .849) indicated that substantial prediction was 
obtained. 

Table 11.2 presents the prediction weights for the cognitive model for both 
LLTM and the 2PL-constrained model. For LLTM, all cognitive model variables 
were significant predictors of item difficulty except small angles. All weights 
were in the predicted direction. For the 2PL-constrained model, all cognitive 
model variables except verbal labels and number of cycles were significant pre­
dictors of item difficulty. All weights were in the expected direction except the 

on Algorithmically Generated AO Items 

Item predictor 

Constant 
Pieces 
Labels 
Falsifiable 
Rotation 
Displacement 
Target distance 
Angles 
Cycles 

LLTM 

Tl 

-3.693 
.118** 
.141** 

-.198** 
.634** 
.274** 
.379** 
.187 
.395** 

se 

.175 

.041 

.025 

.040 

.054 

.055 

.023 

.101 

.060 

t 

2.87 
5.74 

-4.96 
11.74 
4.96 

16.26 
1.85 
6.61 

2PL-constrained 

Item difficulty 

Tl 

-4.204 
.477** 

-.064 
-.207** 

.486** 

.424** 

.316** 
-.305* 

.101 

se 

.353 

.069 

.041 

.050 

.076 

.081 

.033 

.146 

.066 

t 

6.91 
-1.56 
-4.10 

6.37 
5.22 
9.64 

-2.08 
1.53 

Item discrimination 

T 

2.083 
.611" 

-.348** 
.099 

-.358" 
.438** 

-.077 
-.816" 
-.725" 

se 

.600 

.108 

.057 

.107 

.136 

.148 

.057 

.287 

.198 

t 

5.67 
-6.11 

0.93 
-2.64 
2.95 

-1.34 
-2.84 
-3.66 

Note. LLTM = linear logistic test model; 2PL = two-parameter logistic; AO = Assembling Objects. 
'p < .05. "p < .01 



268 SUSAN E. EMBRETSON 

weight for small angles, which was negative rather than positive. Item discrimi­
nation was significantly predicted by several variables; number of pieces and dis­
placed pieces had significant positive weights, whereas verbal labels, rotated 
pieces, small angles, and number of cycles had significant negative weights. 

Response time was modeled by an analogous procedure, using a mixed-
modeling procedure for continuous variables on the full set of items. Three 
models were estimated: (a) a null model, in which all items had the same mean 
response time; (b) a cognitive model, with the eight cognitive variables used to 
predict item difficulty; and (c) a saturated model, in which separate parameters 
are estimated for each item. Examinees were specified as random variables, and 
the predictors from three models were specified as fixed variables. To meet nor­
mality assumptions, response times were converted to logarithms. The compar­
ison ofthe cognitive model with the null model (x2/rf/*= 27.25, df= 8,p < .001) 
was highly significant, indicating that the cognitive model significantly pre­
dicted mean log item response. The cognitive model did not perfectly predict 
item response time, as indicated by a statistically significant difference from the 
saturated model (x2/d/"= 4.87, df=103,p < .001). However, a fit index based on the 
log likelihoods (Ay2 = .883) indicated that substantial prediction was obtained. 

Table 11.3 presents the parameter estimates for the cognitive model, along 
with standard errors and significance tests. It can be seen that the weights for 
all model variables were significant except small angles and number of cycles. 
Number of pieces, rotated pieces, displaced pieces, and target distance were asso­
ciated with significantly increased log response time, whereas verbal label and 
falsifiable distractors were associated with significantly decreased log response 
time. These results are mostly consistent with the merged analysis in the preced­
ing study in which number of pieces, verbal labels, rotated pieces, and displaced 
pieces had significant or marginally significant weights. However, falsifiable dis­
tractors was not a significant predictor in the preceding study, whereas the num­
ber of cycles was a significant predictor. 

Discussion. The results strongly support the validity of the cognitive model 
as a basis for item generation. More than 90% ofthe new items had acceptable 
psychometric properties. Further, both item difficulty and item response time 

Table 11.3. Estimates, Standard Errors, and Significance Tests for the Cognitive Model 
of Mean Log Response Time on Algorithmically Generated Assembly Object Items 

B f 

Parameter 

Intercept 
Number of pieces 
Verbal labels 
Falsifiable distractors 
Rotated pieces 
Displaced pieces 
Target distance 
Small angles 
Number of cycles 

Estimate 

2.130311 
0.129167 

-0.041761 
-0.079431 

0.214757 
0.097440 
0.030900 

-0.020860 
0.011930 

J 

SE 

.040070 
0.009959 

.006219 

.009903 

.012889 

.012699 

.005596 

.017960 

.017289 

J 

df 

5354.282 
4618.368 
4513.820 
5171.030 
8453.402 
9461.323 
6670.048 
4006.186 
3570.885 

^ « J ^ V . V J . . ~ * U U 

t 

53.165 
12.970 
-6.716 
-8.021 
16.662 
7.673 
5.522 

-1.161 
.690 

Sig. 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.246 

.490 
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were predicted from the variables of the cognitive model, which were directly 
manipulated. Both LLTM and the 2PL-constrained model were used to estimate 
the cognitive model parameters for item difficulty, whereas an analogous mixed-
modeling procedure was applied to model item response item. The fit indices 
for the cognitive models were high, comparable to multiple correlations in the 
middle to high .80s, indicating that more than 70% ofthe differences between 
items in difficulty and response time were explained by the cognitive model. Thus, 
strong support for the cognitive models were obtained, consistent with Embretson 
and Gorin's (2001) research, as well as with earlier research on a verification 
version of AO (Mumaw & Pellegrino, 1984; Pellegrino et al., 1985; Pellegrino & 
Glaser, 1982). 

This study had a more powerful design to isolate the impact of the model 
variables than the preceding study because the variables were manipulated or 
counterbalanced to avoid confounded effects. Further, full information IRT-
based models were used to estimate the effects. It is interesting that most results 
on the impact ofthe individual variables in the cognitive model were consistent 
with the merged analysis ofthe two item banks in the preceding study. 

For the encoding stage, the number of pieces was associated with increased 
item difficulty and response time, as expected from the cognitive model. These 
results are also consistent with the findings ofthe preceding study. The presence 
of item pieces with verbal labels, however, had unexpected effects. Although 
the verbal labels variable was associated with decreased item response time, 
as expected, it was associated with increased item difficulty, rather than the 
expected decreased item difficulty as obtained in the preceding study. These 
results may be due to the scoring of the verbal labels variable in the current 
study. In the preceding study, verbal labels scores were obtained from human 
raters; in the current study, the scores were based on the drawing constraints. 
The results suggest that further research is needed to clarify how formal features 
of items relate to human judgments of whether or not the pieces in AO have ver­
bal labels that aid item solving. 

For the falsification stage, item difficulty and item response time decreased 
when the items had pieces with readily falsifiable distractors. These results were 
expected from the cognitive model, as falsifiable distractors have salient features 
that differ from the key, such as the wrong number of pieces and obviously incon­
gruent shapes. In the preceding study, both item difficulty and response time 
decreased with the number of falsifiable alternatives, although the latter rela­
tionship was not statistically significant, which did not fully support the cogni­
tive model in Figure 11.2. However, the results from the current study, with a 
more powerful design, support the model. 

For the confinnation stage, item difficulty and item response time increased 
as the number of rotated pieces, displaced pieces, and target distance (i.e., ofthe 
key to stem) increased, as expected from the cognitive model. In general, the vari­
ables from the confirmation stage of processing had greater impact than did the 
variables from the other stages. Similar results were obtained from the preced­
ing study. These effects are consistent with increased involvement of spatial 
visualization in item solving. The impact ofthe other confirmation variables, 
small angular disparities and the number of comparison cycles, differed across 
models in the current study. Neither of these variables was significant in the 
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preceding study. Research is needed on the degrees of angular disparity that are 
readily judged as different between pieces, so as to produce more valid scoring of 
AO items on this variable. 

The impact of the cognitive model on item discrimination was estimated 
in the 2PL-constrained model. Item discrimination increased with the number 
of pieces and the number of displaced pieces, whereas item discrimination 
decreased with small angular disparities, number of cycles, number of rotated 
pieces, and verbal labels. Apparently the design and modeling procedures in the 
current study led to a more powerful test of effects compared with the preceding 
study in which only small angular disparities had a significant weight in the 
merged model. 

The results have some interesting implications for what is measured by the 
AO items that were studied here. The original goal in developing a test with AO 
items in Project A (Peterson et al., 1990) was to measure the rotation component 
of spatial visualization. However, the cognitive model that was supported by the 
current study and the preceding study includes several more sources of item com­
plexity than rotation. That is, the confirmation stage is a visual search process in 
which corresponding objects are identified, rotated, and compared. Displacement 
of pieces, target distance, and possibly other stimulus factors increase the load of 
spatial visualization but not the rotation component. Further, support for a fal­
sification stage in processing the multiple choice format of the AO items was 
obtained. That is, the examinee may implement a strategy of eliminating distrac­
tors that have clearly discrepant pieces from the assembled object. Finally, the 
number of rotated pieces in the current study was associated with decreased 
item discrimination, whereas the number of pieces and the number of displaced 
pieces were associated with increased discrimination. These results are also 
inconsistent with the AO test measuring the rotation component of spatial visua­
lization. Taken together, these results suggest that AO items do not uniquely 
measure spatial rotation. As indicated by Lohman's (2000) review, they may be 
more saturated with fluid intelligence or general spatial visualization processes 
than spatial rotation. The results also have implications for test design. Whether 
AO items measure primarily spatial visualization, rotation, or fluid intelligence 
can be changed by the test design specifications based on the cognitive model 
variables. That is, the role of rotation can be increased by decreasing emphasis 
on falsifiable distractors, displaced pieces, and target distance. Or, conversely, 
the role of visual search can be emphasized by increasing piece displacement and 
target distance. The role of fluid intelligence would be increased by making the 
items more amendable to strategies to handle complexity, such as increasing the 
number of falsifiable distractors. Which one of these traits to emphasize depends 
on the purpose of testing. If the goal is to increase incremental validity, as in the 
military, research is needed to determine which sources of item difficulty are 
more important in producing the incremental validity of the AO test over the 
other ASVAB subtests. 

The next stage in the cognitive design system approach is implementing an 
item design strategy, generating items, and banking items by their stmctural 
parameters. An item generator for AO items has been developed (a beta version 
is described in Embretson, 2000). Embretson and Mclntyre (2008) described 
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results from an initial tryout of 56 items, emphasizing the rotation and displace­
ment aspects ofthe cognitive model. The item difficulties were moderately well 
predicted using the weights for the LLTM on Table 11.2. The next step is to 
increase the scope of items produced by the generator and then produce a large 
bank of new items. 

General Discussion 

This chapter described a cognitive design system approach to test development. 
In this approach, items may be generated to predictable levels and sources of 
difficulty using model-based estimates of how item stimulus features impact 
performance. Unlike traditional test development, the cognitive design system 
approach provides test design principles that can lead to generating items with 
target levels and sources of item complexity. The cognitive design system 
approach is most effectively implemented when the parameters of a cognitive 
IRT model can be estimated. These parameters not only have implications for 
the substantive aspect of validity but also can be used to guide test and item 
design. 

The cognitive design system approach was illustrated with an application 
to the measurement of spatial ability. Results from a research project on the 
AO test on the ASVAB were presented. A cognitive model to explain the sources 
of item complexity was presented, and two studies on the model were dis­
cussed. The cognitive model was strongly supported for explaining empirical 
item properties on existing AO items and new AO items that were produced by 
manipulating the cognitive model variables. Thus, the cognitive model is ade­
quate to guide item and test design. 

A final stage in the cognitive design system approach is to develop an auto­
matic item generator to produce items. Such a generator has been developed for 
AO items, based on the research presented in this chapter. The initial results 
are promising (Embretson & Mclntyre, 2008); item difficulties were predictable 
directly using the LLTM weights in the studies reported in this chapter. More 
research is clearly needed, but the results are promising for developing items 
to target levels and sources of cognitive complexity. Automatic item generation 
is an active research area. The interested reader should consult chapter 9 of 
this volume for a comprehensive review of item generation. 

References 

Bejar, 1.1. (2002). Generative testing: Prom conception to implementation. In S. H. Irvine & P. C. 
Kyllonen (Eds.), Item generation for test development (pp. 199-218). Mahwah, NJ: Erlbaum. 

Bejar, I. (2008). Model based item generation: A review of recent research. In S. E. Embretson 
(Ed.), New directions in measuring psychological constructs with model-based approaches. 
Washington, DC: American Psychological Association Books. 

Bejar, I., Lawless, R., Morley, M., Wagner, R., Bennett, R., & Revuelta, J. (2003). A feasibility study 
of on-the-fly item generation in adaptive testing. Journal of Technology, Learning, and 
Assessment, 2(3). 



272 SUSAN E. EMBRETSON 

Bormuth, J. R. (1970). On the theory of achievement test items. Chicago, IL: University of Chicago 
Press. 

Byrne, R. M., & Johnson-Laird, P. N. (1989). Spatial reasoning. Journal of Memory and Language, 
28, 564-575. 

Campbell, J. P. (1990). The Army selection and classification project (Project A). Personnel 
Psychology, 43, 231-239. 

Cronbach, L. J. (1970). Review of "On the theory of achievement test items" by J. R. Bormuth. 
Psychometrika, 35, 509-511. 

Duncan, J., & Humphreys, G. (1989). Visual search and stimulus similarity. Psychological Review, 
96, 433^58. 

Embretson, S. E. (1997). Multicomponent latent trait models. In W. van der Linden & R. Hambleton 
(Eds.), Handbook of modern item response theory (pp. 305-322). New York: Springer-Verlag. 

Embretson, S. E. (1983). Construct validity: Construct representation versus nomothetic span. 
Psychological Bulletin, 93, 179-197. 

Embretson, S. E. (1998). A cognitive design system approach to generating valid tests: Application 
to abstract reasoning. Psychological Methods, 3, 300-396. 

Embretson, S. E. (1999). Generating items during testing: Psychometric issues and models. 
Psychometrika, 64, 407^33. 

Embretson, S. E. (2000). Generating assembling objects items from cognitive specifications (Final 
Report Subcontract No. SubPR98-ll). Alexandria, VA: HumRRO. 

Embretson, S. E., & Gorin, J. (2001). Improving construct validity with cognitive psychology princi­
ples. Journal of Educational Measurement, 38, 343-368. 

Embretson, S. E., & Mclntyre, H. (2008). Automatic item generation: A new method for test devel­
opment. In M. Williams and P. Vogt (Eds.), The SAGE handbook of methodological innovation. 
London: SAGE. 

Embretson, S. E., & Reise, S. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum. 
Embretson, S. E., & Wetzel, D. (1987). Component latent trait models for paragraph comprehension 

tests. Applied Psychological Measurement, 11, 175-193. 
Fischer, G. H. (1973). Linear logistic test model as an instrument in educational research. Acta 

Psychologica, 37, 359-374. 
Glas, C. A. W., & Van der Linden, W. (2003). Computerized adaptive testing with item cloning. 

Applied Psychological Measurement, 27, 247-261. 
Glasgow, J., & Malton, A. (1999). A semantics for model-based spatial reasoning. In G. Rickheit & 

C. Habel (Eds.), Mental models in discourse processing and reasoning: Advances in psychology. 
Amsterdam: North-Holland/Elsevier. 

Gorin, J. (2005). Manipulating processing difficulty of reading comprehension questions: The feasi­
bility of verbal item generation. Journal of Educational Measurement, 42, 351-373. 

Janssen, R., Schepers, J., & Peres, D. (2004). Models with item and item group predictors. In P. De 
Boeck & M. Wilson (Eds.), Explanatory item response models. New York: Springer. 

Johnson, C. J., Paivio, A. U., & Clark, J. M. (1990). Spatial and verbal abilities in children's cross-
modal recognition: A dual coding approach. Canadian Journal of Psychology, 43, 397-412. 

Just, M., & Carpenter, P. (1985). Cognitive coordinate systems: Accounts of mental rotation and 
individual differences in spatial ability. Psychological Review, 92, 137-172. 

Mislevy, R. J., Sheehan, K. M., & Wingersky, M. (1993). How to equate tests with little or no data. 
Journal of Educational Measurement, 30, 55-76. 

Lohman, D. F. (2000). Complex information processing and intelligence. In R. J. Sternberg (Ed.), 
Handbook of intelligence. Cambridge, England: Cambridge University Press. 

Messick, S. (1995). Validity of psychological assessment. American Psychologist, 50, 741-749. 
Mumaw, R. J., & Pellegrino, J. W. (1984). Individual differences in complex spatial processing. 

Journal of Educational Psychology, 76, 920-939. 
Pellegrino, J. W. & Glaser, R. (1982). Inductive reasoning. In R. J. Sternberg (Ed.), Analyzing apti­

tudes for learning: Inductive reasoning. Hillsdale, NJ: Erlbaum. 
Pellegrino, J. W., Mumaw, R., & Shute, V. (1985). Analyses of spatial aptitude and expertise. In 

S. Embretson (Ed.), Test design: Developments in psychology and psychometrics. New York: 
Academic Press. 

Peterson, N. G., Hough, L. M., Dunnette, M. D., Rosse, R. L., Houston, J. S., Toquam, J. L. & Wing, 
H. (1990). Project A: Specification of the predictor domain and development of new 
selection/classification tests. Personnel Psychology, 43, 247-276. 



COGNITIVE DESIGN SYSTEMS 273 

Schmeiser, C. B., & Welch, C. J. (2006). Test development. In R. L. Brennan (Ed.), Educational 
measurement (4th ed., pp. 307-353). Westport, CT: Praeger. 

Shepard, R. N., & Feng, C. (1971). A chronometric study of mental paper folding. Cognitive 
Psychology, 3, 228-243. 

Stout, W. (2007). Skill diagnosis using IRT-based continuous latent trait models. Journal of 
Educational Measurement, 44, 313-324. 

Tinker, M. A. (1944). Speed, power, and level in the Revised Minnesota Paper Form Board Test. 
Journal of Genetic Psychology, 64, 93-97. 

Wesman, A. G. (1971). Writing the test item. In R. L. Thomdike (Ed.), Educational measurement. 
Washington, DC: American Council on Education. 



This page intentionally left blank



Index 

Aberg-Bengtsson, L., 112-114 
Ability model, 40-41 
Abortion attitudes study, 188-196 
Academic psychology, 84 
Acceptance concept, 175-178, 188-196 
Achievement tests, 247 
Adaptive item generation, 219, 251 
Aggen, S. H., 25 
Aggression, verbal. See Verbal aggression 
Ainsworth, A. T., 164 
Akaike Information Criterion (AIC) index, 

189, 266 
Albert, J. H., 157 
Alcoholics, 76-77 
Analysis of variance (ANOVA) design, 229 
Analytical reasoning 

on Graduate Record Exam, 206 
item generation for, 209-211 

Andrich, D., 177 
Anger, 242-243 
Angular disparity, 203 
ANOVA (analysis of variance) design, 229 
AO test. See Assembling Objects test 
Argumentation theory, 205 
Armed Services Vocational Aptitude 

Battery (ASVAB), 112, 214, 215, 247, 
253, 256-258 

Arpeggio software, 53 
Assembling Objects (AO) test, 247, 248, 

253-271 
Assessments, diagnostic. See Diagnostic 

assessments 
Assessment triangles, 37 
ASVAB. See Armed Services Vocational 

Aptitude Battery 
Attenuation effect, 234 
Attitude measurement, 175-176,188-196 
Autocorrelations, 44 
Automata theory, 85 
Automatic item generation, 211, 237-238, 

248, 250, 271 

Baker, F. B., 157 
Balke, G., 106 
Bamber, D., 71 
Barton, M. A., 151 
Batchelder, W. H., 71, 73, 75, 80-83, 90 
Bayesian approaches 

to estimation, 18, 45, 62-63, 241 
to Rasch-binary multinomial processing 

trees, 90-91 
to statistical computing, 156-158 

Bayesian information criterion (BIC), 189 
Bejar, 1.1., 2, 202, 203, 219, 248 
Bennett, R. E., 203 
Beta-binary multinomial processing trees 

(beta-BMPTs), 90 
Bias, 21, 76 
BIC (Bayesian infonnation criterion), 189 
Binary multinomial processing tree 

(BMPT) models, 78-82, 86, 89-90 
Birenbaum, M., 38 
Bock, R. D., 238, 240-241 
Bollen, K. A., 101-103 
Bookmark procedure, 241-242 
Boring, E. G., 84, 220 
Boston Naming Test, 83 
Bradlow, E. T., 138 
Brain damage, 76 
Braun, H., 2 
Broad visual perception, 111 
BRUGS, 157 
BUGS, 157 
Burt, C, 98 

Calibration, of items, 2 
Carlstedt, B., 117 
Carpenter, P. A., 212 
Carroll, J. B., I l l 
Carstensen, C. H., 30 
Casella, G., 157 
Cattell, R. B., I l l 
Chain plots, 44 
Choi, H., 214 
Chosak-Reiter, J., 83 
Class dependency, 25-26 
Classical test theory (CTT), 3,19 
Class memberships, 23, 26 
Clustering, 73-76 
Coan, R. W., 98 
Cognitive complexity, 250, 257 
Cognitive design systems approach, 

247-271 
advantages of, 250-251 
cognitive psychometric models, 251-253 
to measuring spatial ability, 253-271 
steps in, 248-250 

Cognitive modeling, 83-89. See also 
Multinomial processing tree models 

and history of psychology, 84-85 
item response theory vs., 85-89 

Cognitive psychometric models, 251-253 
Cognitive psychometrics, 71 

275 



276 INDEX 

Colemont, A, 241 
College Board, 48, 58 
Combination dependencies, 137 
Compensatory multiple classification latent 

class models, 42 
Compensatory skill interaction, 50 
Complexity 

cognitive, 250, 257 
item, 248 

Comprehension, 216 
Computational rules, 79 
Computerized Adaptive Testing 

(H. Wainer), 1 
Confirmation, 256, 258, 260-263, 266, 

269-270 
Confirmation bias, 76 
Confusion matrices, 72 
Congeneric test theory, 107 
Conjunctive multiple classification latent 

class models (MCLCMs), 42 
Conjunctive skill interaction, 50 
Consortium to Establish a Registry for 

Alzheimer's Disease, 83 
Construct representation, 204, 227-228, 

242-243 
Construct validation research, 227 
Construct validity, 102, 204 
Content validity, 102 
Convergence checking, 43-44, 63 
Cook-Medley Hostility Scale of 

MMPI, 126-127 
Correlational disciplines, 1 
Criterion validity, 102 
Cronbach, L. J., 3, 4, 204, 205, 220, 247 
Crystallized intelligence, 111, 211 
CTT. See Classical test theory 
Cureton, E. E., 100-101 

Darwin, Charles, 84 
Data analysis models, 71 
De Boeck, P., 4, 27,136, 137, 208, 228, 237 
De Corte, E., 241 
Densities, normal, 16-18 
Design matrices, 27-28 
Developmental processes, 26 
Dey, D. K., 156 
Diagnostic and Statistical Manual of 

Mental Disorders (DSM-W-TR), 60 
Diagnostic assessments, 35-67 

attributes in, 38-39 
development/analysis of tasks in, 39-40 
educational measurement example, 49-60 
estimation of model parameters in, 42-43 
evaluation of results from, 43^46 
and evidence-centered design 

paradigm, 37 

psychological assessment example, 60-66 
psychometric model for, 40-42 
purpose of, 37-38 
systems for scoring/reporting of, 47-48 
terminology of, 36 

Diagnostic models, 27-28 
Diagrams, Tables, and Maps (DTM) 

test, 112-114 
DiBello, L. V., 28, 45 
Dick, M. B., 83 
Differential validity, 26 
Difficulty models, 212-213 
Dimension-dependent effects, 137 
DINA model, 42, 43, 62 
DINO model, 42, 43, 62, 65, 66 
Disagree-agree responses, 178 
Disjunctive multiple classification latent 

class models, 42 
Domain-referenced testing, 237-242 
Donoghue, J. R., 188 
Draney, K, 26 
Drasgow, P., 131, 203 
Drug testing, 177 
DTM (Diagrams, Tables, and Maps) 

test, 112-114 
Dyslexia, 83 

EAP (expected a posteriori) score, 135 
ECD. See Evidence-centered design 
Educational measurement, 49-60 
Educational Measurement, 98 
Educational Testing Service (ETS), 45, 49, 

151,210,219 
ELL (LanguEdge English Language 

Learning) assessment, 49 
EM algorithm. See Expectation-

maximization algorithm 
Embretson, S. E., 204-205, 212-214, 217, 

227, 255-257, 270-271 
Empirical item response functions (ERFs), 

154 
Empirical keying, 204 
EMstats, 46 
Encoding, 214, 255, 258, 260-265, 269 
End oftest factor, 113-116 
Engelhard, G., 1 
English psychology, 84-85 
Enright, M. K, 217 
Equating, 47 
ERFs (empirical item response 

functions), 154 
Estes, W. K., 87 
Estimated posterior distribution, 44 
Estimation 

in educational measurement example, 
53-58 

in MDCUM, 180-188 



INDEX 277 

of model parameters in diagnostic 
assessments, 42-43 

of normal mixture models, 18 
point and interval parameter, 81, 82 
in psychological assessment example, 63 
with random-effects linear logistic test 

model, 235-237 
of skill masteries using subscore, 48 

ETS. See Educational Testing Service 
Everson, H. T., 26 
Evidence-centered design (ECD), 37, 205 
Evolution, 84 
Examinees, 36, 46 
Expectation-maximization (EM) algorithm, 

18, 43-44, 81-82, 180-186, 192 
Expected a posteriori (EAP) score, 135 
Expected value functions, 177 
Experimental disciplines, 1 
Explanatory Item Response Models 

(P. De Boeck and M. Wilson), 2 
The Expression of Emotions in Man and 

Animals (Charles Darwin), 84 
External validity 

defined, 36 
in psychological assessment example, 

65-66 
Eyewitness memory, 76 

Factor analysis, 100-101 
Factorial perception experiments, 88 
Fairon, C, 211 
Falsification, 256, 258, 260-264, 269, 270 
Feasel, K, 60 
Fern, T., 214 
Figural abstract reasoning, 213 
Figural reasoning, 211-213 
FIML estimation. See Full-information 

maximum likelihood estimation 
Finite state templates, 211 
Fischer, G. H., 1 
Fisher, Roland, 85 
Fisher information matrix, 81 
FLMP (fuzzy logic model of perception), 88-89 
Fluid intelligence, 111, 211-212, 270 
Foot-length measures example, 12-15 
Formann, A. K., 25, 30 
Four-parameter logistic (4PLM) model 

application of, 147 
and Gibbs Sampler, 157-159 
and modeling MMPI data, 150-151 
in psychometric assessment of low self-

esteem, 159-169 
psychometric differences with, 168-169 

Fredericksen, N. A., 2 
Free-recall memory, 73-76 
Full-information maximum likelihood 

(FIML) estimation, 126, 128, 140 

Fusion model system, 52 
Fuzzy logic model of perception (FLMP), 

88-89 

G2LD index, 128 
Galton, Sir Francis, 84-85 
Gambling, 60-66 
Gambling Research Instrument (GRI), 60,65 
Game theory, 85 
GDM (general diagnostic model), 28-30 
Gelman, 44 
Gender differences, in test performance, 113 
General Condorcet model, 90 
General diagnostic model (GDM), 28-30 
General DTM factor, 113-116 
Genetics, 72 
George, E. I., 157 
German experimental psychology, 84, 85 
Gibbons, R. D., 140 
Gibbs Sampler, 157-159,164, 235, 236 
Glas, C. A. W., 237, 238 
Glaser, R., 204-205 
GLIMMIX macro, 235, 242 
Goodness-of-fit, 81, 82 
Gorin, J., 255-257 
Gorin, J. S., 214 
Gorsuch, R. L., 105 
Gosset, William, 85 
Graduate Record Examination (GRE), 

206-209, 211, 214-215, 217-219 
Graduate school, 206 
Graf, E. A., 219 
GRI. See Gambling Research Instrument 
Gustafsson, J. E., 106,108,109,111-112, 

117, 119 

Haberman, S. J., 25, 28, 30 
Hambleton, R. K., 151 
Hanson, B. A., 238 
Harrison, D. A., 131 
Haviland, M. G., 164 
Hedeker, D. R., 140 
Henson, R. A., 45, 48, 60, 62, 63, 65 
Heterogeneous instruments, 98, 108 
Hidden structure, 15 
Hierarchical factor model, 106 
Hierarchical item response theory model, 

239-240, 251-253 
Hierarchical modeling approaches, 104-110 
Hierarchical regression, 256, 260 
Higher education, 206 
Higher order (HO) model, 104-107 
Hill, C. D., 129-131 
Hindsight bias, 76 
Holzman, G. B., 201 
HO (higher order) model, 104-107 
Homogeneous tests, 108, 109 



278 INDEX 

Horn, J. L., 111,211-212 
Hoskens, M., 136,137 
Hu, X., 73, 80, 81, 90 
Humphreys, L. G., 97 
HYBRID model, 26 
Hypothesis testing, 81 

IMstats, 46, 57 
Independent and identically distributed 

(i.i.d.) observations, 78 
Indicator matrices, 39-40 
Individual differences 

in aggregated data, 87 
in correlational discipline, 1 
in history of psychology, 85 
in memory study, 77-78 
in verbal aggression, 228 

Inferential reasoning, 206 
Information pooling, 76 
Information sciences, 85 
Information theory, 85 
Intelligence, 97, 108, 111, 211-212, 270 
Intemal consistency, 3, 107 
Internal validity 

defined, 46 
in educational measurement example, 

57,58 
IRFs. See Item response functions 
IRT. See Item response theory 
IRT models. See Item response theory models 
Isomorphs, 203, 218 
Item banking, 241, 250 
Item complexity, 248 
Item design, 227-231, 250 
Item extremity, 166-167 
Item generation, 201-221, 250 

for analytical reasoning, 209-211 
evaluating progress in, 202-203 
for figural reasoning, 211-213 
for logical reasoning, 206-209 
for mathematics, 215-220 
as Popperian mechanism, 202 
structural modeling approach to, 247-248 
validity in, 204-206 
for verbal comprehension, 213-215 

Item master, 36 
Item modeling, 201-202 
Item performance, 249 
Item response data, 19-22 
Item response functions (IRFs) 

and diagnostic assessments, 36, 40-42 
for standard item response models, 

148-149 
Item response probabilities, 2-3 
Item response theory (IRT). See aZso 

Mixture distribution item response 
theory 

cognitive memory modeling vs., 85-89 
development of, 1 
and diagnostic assessments, 35 
for disentangling constructs, 123,126, 

130-136, 138, 142-143 
multidimensional, 27-28 
and research on psychological 

constructs, 2 
Item response theory-based parametric 

latent class models, 36, 47, 48, 60 
Item response theory (IRT) models, 25-30, 

147-169 
advantages of, 163-165 
applications, 26-27 
cognitive psychometric models, 

251-253, 263 
and diagnostic models, 27-28 
differences with 4PLM model, 168-169 
difficulty with, 213 
for estimation of domain scores, 238-239 
with interaction parameters, 136-140 
mixture general diagnostic model, 28-30 
and MMPI-A LSE Scale, 152-154, 

159-167 
modeling MMPI data with, 150-152 
psychometric models, 72 
rest score regressions in, 154-156 
standard item response models, 148-150 
unfolding, 176-178 
use of Gibbs Sampler in, 157-159 

Item response theory parameters, 249-250 

Jang, E. E., 49, 50, 53, 55-58 
Janssen, R., 234, 235, 237, 241 
Johnson-Laird, P. N., 206, 208 
Jones, L., 60 
Jorgensen, R., 128 
Journal of Mathematical Psychology, 84 
Junker, B., 36 
Junker, B. W., 28 

Kane, M. T., 205, 206 
Karabatsos, G., 90 
Kelderman, H., 12, 25 
Klauer, K. C , 90 
Klein, M., 38 
Knapp, B. R., 71 
Knoors, E., 241 
Knowledge factor (Knowl), 115-117 
Kolen, M. J., 238-239 
Kubarych, T. S., 25 

LaDuca, A., 201 
Lag, 75 
Language testing, 29 
LanguEdge English Language Learning 

(ELL) assessment, 49 



INDEX 279 

Latent class analysis (LCA) 
in mixtures of distribution for discrete 

observed variables, 22-24 
in skills diagnosis, 41 

Latent parameters, 78 
Latent structure analysis, 124 
Latent trait theory, 124 
Latent variables, 19,123-124 
Laughlin, J. E., 188 
Lazarsfeld, P. P., 123-124,126,140 
LCA. See Latent class analysis 
LD. See Local dependence 
LD indices, 128 
Lee, W. C, 241 
Letter identification, 76 
Likert-type response scales, 128,129 
Linear logistic test model (LLTM). See also 

Random-effects linear logistics test 
model 

as diagnostic model, 28 
estimation with, 266-267, 269 
and item design, 232 
item difficulty in, 252 
random-effects linear logistic test model 

vs., 234-237 
standard errors in, 263 

Lisrel 8,129 
LLTM. See Linear logistic test model 
LLTM-R. See Random-effects linear logistic 

test model 
Local dependence (LD), 125-143 

detection of, 126-132 
examples, 142 
modeling tests with, 132 
multidimensional models for, 140-141 
parametric models for, 136-140 
and redefining item responses, 132-136 

Local independence, 23, 125 
Located latent class models, 24-25 
Loevinger, J., 204, 205 
Logical reasoning, 206-209 
LOGIST, 132 
Lohman, D. F., 253 
Lord, F. M., 151 
Lucke, J. F., 98, 107 
Luecht, R., 203 
Luo, G., 176, 177 

Macready, G. B., 12, 25 
Manifold, V., 71 
Marginal maximum likelihood (MML), 25, 

187 
Marginal maximum likelihood estimation 

(MMLE), 43 
Markov chain Monte Carlo (MCMC) methods, 

18,43,44,56,63,65,140,141,157,236 
Mastery, 47, 55, 57, 240, 241 

Mathematical word problems, 253 
Mathematics 

item generation for, 215-220 
skills diagnoses of, 41-42 

Mathematics Test Creation Assistant 
(MTCA), 218, 219 

Maximum likelihood estimates (MLEs), 76 
McDonald, R. P., 107,110 
Mclntyre, H., 270-271 
MCLCMs (multiple classification latent 

class models), 42 
MCMC methods. See Markov chain Monte 

Carlo methods 
Mdltm, 29 
Meehl, P. E., 204, 220 
Mehta, P. D., 25 
Memory 

in cognitive modeling, 85-89 
free-recall, 73-76 
recall, 82-83 

Mental model theory, 208, 254 
Mental rotation tests, 203 
Messick, S., 118, 250 
Meulders, M., 237 
Minnesota Multiphasic Personahty Inventory 

(MMPI), 126-127,150-152 
Minnesota Multiphasic Personality 

Inventory—Adolescent (MMPI-A), 
152-156, 159-167 

Minnesota Paper Form Board, 254 
MIRT. See Multidimensional item response 

theory 
Mis (modification indices), 128-129 
Mislevy, R. J., 2,12, 25, 237 
Mixed number subtraction, 11 
Mixed Unfolding Model (MDCUM), 177-196 

attitudes toward abortion example, 
188-196 

elements in, 178-179 
expected value functions under, 177 
flexibility of, 196 
parameter estimation, 179-188 

Mixture distribution item response theory, 
11-30 

foot length example, 12-15 
mixtures of continuous random 

variables, 15-18 
mixtures of distributions for discrete 

observed variables, 18-25 
models, 25-30 

Mixture general diagnostic model, 28-30 
Mixtures of continuous random variables, 

15-18 
Mixtures of distributions for discrete 

observed variables, 18-25 
item response data, 19-22 
latent class analysis, 22-24 
located latent class models, 24-25 



280 INDEX 

MLEs (maximum likelihood estimates), 76 
MML. See Marginal maximum likelihood 
MMPI. See Minnesota Multiphasic 

Personality Inventory 
MMPI-A. See Minnesota Multiphasic 

Personality Inventory—Adolescent 
Modeling 

cognitive, 83-89 
item, 201-202 
psychometric, 84-91 
regression, 250 
structural, 248 

Modification indices (Mis), 128-129 
Molenaar, I. V., 1 
Monotonicity, 21, 24 
Mooney, J. A., 126 
Morley, M., 219 
MPT models. See Multinomial processing 

tree models 
MTCA (Mathematics Test Creation 

Assistant), 218, 219 
Mullen, K, 241 
Multidimensional item response theory 

(MIRT), 27-28, 138, 140-141 
Multidimensional models, 140-141 
Multilingual tests, 220 
Multinomial processing tree (MPT) models, 

71-83 
for clustering in free-recall memory, 73-76 
for psychological assessment, 82-83 
psychometric modeling concepts in, 89-91 
for special populations, 76-78 
structure of, 72-73 
terminology, 78-82 

Multiple-choice tasks, 5 
Multiple classification latent class models 

(MCLCMs), 42 
Multiple regression analysis, 97-98 
Multiple-skill tasks, 39 

National Assessment of Educational 
Progress (NAEP), 30, 241 

National Assessment of Mathematics in 
Primary Education, 241 

National assessments, 240-242 
National Council of Teachers of 

Mathematics, 217 
Neale, M. C, 25 
Nested factor (NF) model, 106-107, 109, 

110,115, 117 
Newstead, S. E., 210 
Nicewander, W. A., 238-239 
NIDA model, 42 
Nomological nets, 205 
Nomothetic span, 204, 227-228 
Nomothetic theories of intelligence, 211 
Nonsymmetric content ambiguity, 167 

Objective Measurement: Theory Into Practice 
(M. Wilson and G. Engelhard), 3 

Object perception, 76 
Observable categories, 78 
Omission, of items, 132 
One-parameter logistic model (IPLM), 

148-150 
Operations research, 85 
Order dependencies, 137 
Orthogonal factors, 106 

Pair-clustering model, 74-76 
Paired comparison model, 88 
Paired-comparison scaling models, 71-72 
Parameter estimation, 179-188 
Parameter recovery, 188 
Parameters 

and diagnostic assessments, 42-45 
item response theory, 249-250 
latent, 78 
of memory models, 87 

Parametric models, 136-140 
Parametric stochastic models, 86 
Parsons, C. K, 131 
Pathological gambling, 60-66 
Pearson, K, 14, 85 
PedsQL™ Physical Functioning Scale, 

130-132 
PedsQL™ Social Functioning Scale, 129 
Person parameter estimation, 187-188 
Phillips, G. A., 90 
Plymouth project, 211 
Pommerich, M., 238 
Popper, K. R., 202 
Popperian mechanisms, 202 
Population information, 18 
Posterior predictive model (PPM), 45 
Posterior probability of mastery (ppom), 52 
Preliminary SAT/National Merit 

Scholarship Qualifying Test 
(PSAT/NMSQT), 48, 58 

Proactive interference, 76 
Probability of pathological gambling (PPG), 

63,66 
Process dissociation procedure, 76 
Proficiency scaling, 47 
Project A (U.S. Army), 247 
Propositional density, 214 
Propositional reasoning, 76 
PSAT/NMSQT (Preliminary SAT/National 

Merit Scholarship Qualifying Test), 
3,48 

Psychological assessment, 60-66, 82-83 
Psychological measurement, 97-119 

in correlational discipline, 1 
hierarchical modeling approaches to, 

104-110 



INDEX 281 

historical perspective on, 99-101 
psychometric concepts in, 101-104 
Swedish Scholastic Aptitude Test 

example, 110-118 
unidimensionality in, 97-99 

Psychology 
academic, 84 
history of, 84-S5 

Psychometric concepts, 101-104 
Psychometric model 

for diagnostic assessments, 40-42 
in educational measurement example, 52 
in psychological assessment example, 62 

Psychometric modeling 
and history of psychology, 84-85 
item response theory in, 85-89 
for measurement, 1 
in multinomial processing tree models, 

89-91 
Psychometrics, 71, 85 
Psychometric Society, 83-84 
Psychometrika, 84 
Public domain scores, 240-241 

Q3 statistic, 128 
Q-matrices, 27-29, 40, 44^5 , 50, 51, 55, 61 
Quantitative factor (Quant), 113-117 

Random-effects linear logistic test model 
(LLTM-R), 231-244 

applications of, 237-243 
and construction representation, 242-243 
estimation in, 235-237 
interpretation of, 234 
Rasch model in, 231-232 
related models, 237 

Rasch-binary multinomial processing 
trees, 90 

Rasch model 
estimation with, 266-267 
probability in, 20-22, 251 
in random-effects linear logistic test 

model, 231-233 
and Saltus model, 26-27 
two-parameter, 88, 89 

Rasch Models (G. H. Fischer and I. V. 
Molenaar), 1 

Raven Progressive Test, 119, 212 
Reading comprehension, 229-230 
Reading skills, 111 
Reasoning 

analytical, 206, 209-211 
figural, 211-213 
inferential, 206 
logical, 206-209 
propositional, 76 

Reasoning skills, 111 

Recent Victimization Scale, 126, 134 
Reckase, M. D., 131 
Recursive tree regression methods, 211 
Referent generality, 98,104,108 
Regression analysis, 97-98 
Regression design, 229 
Regression modeling, 250 
Reise, S. P., 164 
Reliability 

in congeneric test theory, 107 
estimation of, 45-46, 56, 57 
measures of, 109-110 
as psychometric concept, 101-103 

Reparameterized unified model (RUM), 42, 
43, 47, 49, 52 

Reporting, 47-48 
Residual-based statistics, 128 
Response decision, 214 
Response inhibition, 228 
Response probabilities, 23 
Rest score regressions, 154-156 
Retrieval (memory), 76-77, 82-83 
Retroactive interference, 76 
Retrofitting, 38 
Retrospective strategy, 218 
Riefer, D. M., 71, 73, 75-77, 82 
Rijmen, F., 27, 208 
Riley, M. S., 216 
Roberts, J. S., 188 
Roberts, R. D., 112 
Rost, J., 12, 25, 26-27, 30 
Rotation tasks, 253-254 
Roussos, L. A., 28, 45, 47 
Rubin, 44 
Rule space approach, 27 
Rule theories, 208 
RUM. See Reparameterized unified model 
Rupp, A. A., 156, 214 

Saltus model, 26 
Schiz, 167 
Schizophrenia, 76-77, 83 
Schmid and Leiman transformation, 105,107 
Schmitt, J. E., 25, 30 
Schneider's First Rank symptoms, 167 
Scholastic Aptitude Test, 217, 249 
Schulz, E. M., 238-239, 241 
Score interpretations, 251 
Score Report Plus (College Board), 48 
Score reports, 48, 58, 66 
Scoring, 47-48 
SEB (Swedish Enlistment Battery), 117,118 
Self-esteem, 153-159,163-166 
Semantic structure (in math problems), 216 
Seminonparametric estimation, 25 
SEM (structural equation modeling) 

software, 128 



282 INDEX 

Shankle, W. R., 83 
Sheehan, K. M., 217 
Signal detection models, 71 
Sijtsma, K., 28 
Sinharay, S., 45 
Skill profiles, 36 
Skills diagnosis, 35-48 

assessment purpose in, 37-38 
description of attribute space in, 38-39 
development/analysis of tasks in, 39-40 
specification of psychometric model in, 

40-42 
Skill variables, 22 
Smith, Jared, 90 
Social cognition, 76 
Social judgment theory, 175-177 
Social networks, 76 
Society for Mathematical Psychology, 83-84 
Software 

for analyzing MPT models, 82 
Arpeggio, 53 
for structural equation modeling, 128 

SOGS (South Oaks Gambling Screen), 60 
SourceFinder, 215 
Source of information, 76 
South Oaks Gambling Screen (SOGS), 60,65 
Spatial ability, 253-271 
Spearman, Charles, 85, 91 
Special populations, 76-78 
Speech perception, 76 
Stahl, C, 90 
Standard setting, 47, 240, 241 
Standiford, S., 38 
Staples, W. I., 201 
State testing programs, 37 
Statistical genetics, 72 
Statistical inference, 81 
Statistical theory, 85 
Statistics, 85 
Steinberg, L., 125,126,128,132,134,135 
Stochastic processes, 85, 86 
Storage (memory), 76-77, 82-83 
Stout, W., 28, 45 
Strong Vocational Inventory Blank 

(SVIB), 204 
Structural equation modeling (SEM) 

software, 128 
Structural modeling, 248 
Styles, I., 177 
Substantive validity, 243 
Sufficiency, 21 
Suicidal ideation, 167 
SVIB (Strong Vocational Inventory 

Blank), 204 
Swaminathan, H., 151 
Swedish Enlistment Battery (SEB), 

117, 118 

Swedish Scholastic Aptitude Test 
(SweSAT), 110-119 

combination of, with other tests, 117-118 
development of, 110-111 
research on, 111-112 
sources of variance in diagrams, tables, 

and maps test, 112-114 
sources of variance in scores, 114-116 

Systematic bias, 21 

Tatsuoka, K. K, 12, 38, 46, 48 
Tatsuoka, M. M., 46 
Taylor expansion, 235 
Templeton, B., 201 
Templin, J. L., 45, 47, 48, 60, 62, 63, 65 
Testable assumptions, 22 
Test design, 22 
Testfact, 127,140 
Test Information Function (TIF), 161 
Testlet-based analysis, 133-135 
Test of English as a Foreign Language 

(TOEFL), 45, 214, 215 
Test-taking training, 25 
Test Theory for a New Generation of Tests 

(N. A. Fredericksen, R. J. Mislevy, 
and 1.1. Bejar), 2 

Test Validity (H. Wainer and H. Braun), 2 
Text representation, 214 
Theoretical framework, 248-250, 253-271 
Thissen, D., 125, 126,128,132,134, 135, 

140, 238 
Thorndike, R. L., 99-101,119 
Three-parameter logistic model (3PLM), 

149-154, 161-162, 168-169, 252, 257 
Three-stratum model. 111 
Thurstone, L. L., 104 
TIF (Test Information Function), 161 
TOEFL. See Test of English as a Foreign 

Language 
Training, test-taking, 25 
Transfer, 216 
Tree architecture, 78-79 
Tuerlinckx, F., 237 
Two-parameter logistic-constrained model, 

252, 266, 269, 270 
Two-parameter logistic model (2PLM), 

149-150,168,169, 252, 263, 266-267 
Two-parameter Rasch model, 88 
Tyler, R. W., 204 

Unidimensionality, 97-99 
U.S. Army, 247 

Validity 
differential, 26 
estimation of, 46, 57, 58 
external, 36, 65-66 



INDEX 283 

in item generation, 204-206 
measures of, 109-110 
as psychometric concept, 102-103 
substantive, 243 
types of, 227 
and variance in test scores, 100 

Van der Linden, W., 237, 238 
Van Nijlen, D., 241 
Vansteelandt, K., 228 
Variance, 99-102,108, 110, 112-116 
Verbal aggression, 228-229, 242-243 
Verbal comprehension, 213-215 
Verhelst, N. D., 12, 25 
Vermunt, J. K., 30 
Verschaffel, L., 241 
Violence, 134 
Visual perception, 111 
Visual search tasks, 254 
Vocabulary, 111 
von Davier, M., 12, 26-30, 45 

Wainer, H., 1, 2,138 
Wang, X., 138 
Wedman, I., 111-112 
Weschler test series, 97 
Westerlund, A., 111-112 
Wetzel, D., 214 
Williamson, D. M., 211 
Wilson, M., 1, 2, 26, 228 
Wolfe, J. H., 17 
Wundt, Wilhelm, 84 

Xu, X., 29, 30 

Yamamoto, K., 26, 28, 30 
Yang, Y., 206, 208 
Yen, W. M., 131 
Yung, Y. F., 139 

Zimowski, M. F., 238 
Zumbo, B. D., 156 



This page intentionally left blank



About the Editor 

Susan E. Embretson, PhD, is a professor of psychology at the Georgia Institute 
of Technology in Atlanta. She received her doctoral degree in psychology from the 
University of Minnesota in 1973 and was a professor at the University of Kansas 
from 1974 until 2004. Dr. Embretson's research focuses on modem psychometric 
methods, particularly on the integration of cognitive theory into psychometric 
models and test design. Most recently, she has been exploring how test items can 
be automatically generated by artificial intelligence to target levels and cognitive 
sources of difficulty to optimally measure each individual examinee during test­
ing; the measurement areas have included fluid reasoning, spatial ability, math­
ematical reasoning, and verbal comprehension. Dr. Embretson was awarded the 
Distinguished Scientific Contribution Award from the American Psychological 
Association's (APA's) Division of Evaluation, Measurement, and Statistics in 
2001, and the Technical and Scientific Contribution Award from the National 
Council on Measurement in Education during 1994 to 1996. She also received 
the Palmer O. Johnson Award (with Ken Doyle) from the American Educational 
Research Association in 1976. She has served as president of APA's Division 
of Evaluation, Measurement, and Statistics (1990-1991), the Society for Multi­
variate Experimental Psychology (1997-1998), and the Psychometric Society 
(1998-1999). 

285 


	Contents
	Contributors
	Foreword
	Preface
	Chapter 1
Measuring Psychological Constructs With Model-Based Approaches: An Introduction
	Part I
Model-Based Approaches to Measuring Qualitative Differences Between Individuals
	Chapter 2
Mixture Distribution Item Response Theory, Latent Class Analysis, and Diagnostic Mixture Models
	Chapter 3
Skills Diagnosis for Education and Psychology With IRT-Based Parametric Latent Class Models
	Chapter 4
Cognitive Psychometrics: Using Multinomial Processing Tree Models as Measurement Tools

	Part II Model-Based Approaches to Isolating Entangled Constructs
	Chapter 5
Unidimensionality and Interpretability of Psychological Instruments
	Chapter 6
Using Item Response Theory to Disentangle Constructs at Different Levels of Generality

	Part III Model-Based Approaches for Measuring Personality, Psychopathology, and Attitudes From Self-Reports
	Chapter 7 Measuring Psychopathology With Nonstandard Item Response Theory Models: Fitting the Four-Parameter Model to the Minnesota Multiphasic Personality Inventory

	Chapter 8 MIXUM: An Unfolding Mixture Model to Explore the Latitude of Acceptance Concept in Attitude Measurement


	Part IV Cognitive Psychometric Models for Interactive Item Generation
	Chapter 9
Recent Development and Prospects in Item Generation
	Chapter 10
Modeling the Effect of Item Designs Within the Rasch Model
	Chapter 11 Cognitive Design Systems: A Structural Modeling Approach Applied to Developing a Spatial Ability Test


	Index
	About the Editor

